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NLO EVOLUTION OF COLOR DIPOLES∗
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The small x deep inelastic scattering in the saturation region is gov-
erned by the non-linear evolution of Wilson-line operators. In the leading
logarithmic approximation it is given by the BK equation for the evolution
of color dipoles. In the next-to-leading order the BK equation gets contri-
butions from quark and gluon loops as well as from the tree gluon diagrams
with quadratic and cubic nonlinearities.

PACS numbers: 12.38.Bx, 12.38.Cy

A general feature of high-energy scattering is that a fast particle moves
along its straight-line classical trajectory and the only quantum effect is
the eikonal phase factor acquired along this propagation path. In QCD, for
the fast quark or gluon scattering off some target, this eikonal phase factor
is a Wilson line — the infinite gauge link ordered along the straight line
collinear to particle’s velocity nµ:

Uη(x⊥) = Pexp
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Here Aµ is the gluon field of the target, x⊥ is the transverse position of the
particle which remains unchanged throughout the collision, and the index η
labels the rapidity of the particle (for a review see Ref. [1]).

Let us consider the deep inelastic scattering from a hadron at small
xB = Q2/(2p · q). The virtual photon decomposes into a pair of fast quarks
moving along straight lines separated by some transverse distance. The
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propagation of this quark–antiquark pair reduces to the “propagator of the
color dipole” U(x⊥)U †(y⊥) — two Wilson lines ordered along the direction
collinear to quarks’ velocity. The structure function of a hadron is propor-
tional to a matrix element of this color dipole operator

Ûη(x⊥, y⊥) = 1 −
1

Nc

Tr{Ûη(x⊥)Û †η(y⊥)} (2)

switched between the target’s states (Nc = 3 for QCD).
The small x behavior of the structure functions is governed by the rapid-

ity evolution of color dipoles. At relatively high energies and for sufficiently
small dipoles we can use the leading logarithmic approximation (LLA) where
αs ≪ 1, αs ln xB ∼ 1 and get the non-linear BK evolution equation for the
color dipoles [2, 3]:

d

dη
Û(x, y) =

αsNc

2π2

∫

d2z
(x − y)2

(x − z)2(z − y)2

× [Û(x, z) + Û(y, z) − Û(x, y) − Û(x, z)Û(z, y)] . (3)

The first three terms correspond to the linear BFKL evolution [4] and de-
scribe the parton emission while the last term is responsible for the parton
annihilation. For sufficiently high xB the parton emission balances the par-
ton annihilation so the partons reach the state of saturation [5] with the
characteristic transverse momentum Qs growing with energy 1/xB.

As usual, to get the region of application of the leading-order evolution
equation one needs to find the next-to-leading order (NLO) corrections. In
the case of the small x evolution equation (3) there is another reason why
NLO corrections are important. Unlike the DGLAP evolution, the argument
of the coupling constant in Eq. (3) is left undetermined in the LLA, and
usually it is set by hand to be Qs. The precise form of the argument of
αs should come from the solution of the BK equation with the running
coupling constant, and the starting point of the analysis of the argument of
αs in Eq. (3) is the calculation of the NLO evolution.

Let us present our result for the NLO evolution of the color dipole [6] (the
quark part was calculated in [7,8]). Hereafter, we use notations X ≡ x − z,
X ′ ≡ x − z′, Y ≡ y − z, and Y ′ ≡ y − z′.
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z Ûz′U †

y ÛzÛ
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Here µ is the normalization point in the MS scheme and b=11/3Nc−2/3nf

is the first coefficient of the β-function. The NLO kernel is a sum of the
running-coupling part (proportional to b), the non-conformal double-log
term ∼ ln((x − y)2/(x − z)2) ln((x − y)2/(x − z)2) and the three confor-

mal terms which depend on the two four-point conformal ratios (X2Y ′2)/

(9X ′2Y 2) and ((x − y)2(z − z′)2)/(X2Y ′2). The (almost) conformal kernel
(4) was obtained with the “rigid” rapidity cutoff

Uη
x = Pexp

[
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]

,

Aη
µ(x) =

∫

d4kθ(eη − |αk|)e
−ik·xAµ(k) . (5)

The result for the NLO kernel with the “smooth” cutoff (1) is more com-
plicated and non-conformal so it appears that the color dipoles should be
regularized as in Eq. (5).

It should be emphasized that the NLO result itself does not lead au-
tomatically to the argument of coupling constant αs in Eq. 3. In order to
get this argument one can use the renormalon-based approach: first get
the quark part of the running coupling constant coming from the bubble
chain of quark loops and then make a conjecture that the gluon part of the
β-function will follow that pattern. The Eq. (4) proves this conjecture in
the first nontrivial order: the quark part of the β-function 2/3nf calculated
earlier gets promoted to full b. The analysis of the argument of the coupling
constant was performed in Ref. [7–9] and the result is

d

dη
Tr{ÛxÛ †
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+ . . . . (6)



548 I. Balitsky, G.A. Chirilli

It is easy to see that the argument of αs is determined by the size of the
smallest dipole min(|x − y|, |x − z|, |y − z|).

Our result (4) agrees with the forward NLO BFKL kernel [10] up to
a term proportional α2

s ζ(3) times the original dipole. We think that the
difference could be due to different definitions of the cutoff in the longitudinal
momenta. There is no any obvious preferred definition of the cutoff in the
longitudinal momenta so it can be chosen in any way convenient for practical
calculations of higher orders. It is worth noting that all cutoffs should give
the same αs correction to the intercept of the BFKL pomeron determined
by the rightmost singularity in the complex ω plane. Our goal was to study
the dipole amplitudes with the cutoff closely related to the the small x
asymptotics of the anomalous dimensions of twist-2 gluon operator and,
therefore, we imposed the cutoff (5). It would be instructive to get the j → 1
asymptotics of the anomalous dimensions of gluon operators directly from
Eq. (4), without a Fourier transformation of our result to the momentum
space and comparing to NLO BFKL as it is done in Ref. [6]. The study is
in progress.
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