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1. Introduction

We report on progress toward a fuller understanding on high energy
scattering for hadrons, based on Maldacena’s weak/strong duality relating
Yang–Mills theories to string theories in (deformed) Anti-de Sitter space
[1–4]. In this brief review, we focus on clarifying the properties of the
Pomeron kernel, the structure of eikonal sum, and consequences of con-
finement.

There is in principle a clean definition for the notion of a Pomeron in
QCD. Expand the 2-to-2 SU(Nc) QCD scattering amplitude in g2

0 ∼ 1/N2
c :

A(s, t) = g2
0A1(s, t, λ) + g4

0A2(s, t, λ) + . . .

at fixed ’t Hooft coupling λ = g2
YMNc: Pomeron ≡ leading contribution at

large Nc to the vacuum exchange at large s and fixed t.
In the Regge limit for an n-particle amplitude: A(p1, p2, . . . pn), the ra-

pidity gaps, ln(p+
r p−ℓ ), between any right- and left-moving particles are all

O(log s), i.e., can be specified by a large Lorentz boost, exp[yM+−], with
y ∼ log s. The J-plane is conjugate to rapidity, and is to be identified
with the eigenvalue of the Lorentz boost generator M+−. The boost oper-
ator can be approximated by M+− ≃ 2 − H+−/(2

√
λ) with H+− express-

ible in terms of Casimirs of its commuting subgroup, SL(2, C), of the full
O(4, 2) conformal group. Indeed, the strong coupling conformal Pomeron
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kernel, K, can be directly written in terms of the AdS3 Green’s function
G3(j, v), i.e., K(j, x⊥ − x′⊥, z, z′) = (zz′/R4)G3(j, v). As as a consequence
of SL(2, C) invariance G3(j, v) depends only on the AdS3 chordal distance,
v = ((x⊥ − x′

⊥)2 + (z − z′)2)/2zz′,

G3(j, v) =
1

4π

e(2−∆+(j))ξ

sinh ξ
, (1)

where cosh ξ = 1 + v, and the AdS3 conformal dimension1, ∆+(j) − 1,

∆+(j) ≡ 2 + ∆̃+(j) = 2 +

√
4 + 2

√
λ(j − 2) = 2 +

√
2
√

λ(j − j0).

In both strong coupling and pQCD, the Pomeron contribution grows as
s1+ǫ, ǫ > 0, faster than the Froissart bound, and higher order corrections
must be taken into account. It has been shown in [4] that the standard
eikonal representation generalizes for the case of large ’t Hooft coupling to

A(s, t) = −2is

∫
dzdz′P13(z)P24

(
z′

)∫
d2b e−ib⊥q⊥

[
eiχ(s,b⊥,z,z′) − 1

]
. (2)

To first order in g2
0 , the eikonal can be expressed in terms of an inverse Mellin

transform, χ ∼ −(2(zz′)2s)−1
∫ dj

2πi

(
ŝj+(−ŝ)j

sin πj

)
K(j, b⊥, z, z′). Here the scat-

tering is of initial states 1, 2 to final states 3, 4, in the near-forward limit.
The products of wave functions are for left-moving (1 → 3) and right-moving
(2 → 4) states, respectively. When confinement is implemented, wave func-
tions can be normalized so that

∫
dzPij(z) = δij .

2. Absorptive versus diffractive radii in the bulk

Consider a bulk cross-section, σ(s, z, z′) = 2Re
∫

d2b[1 − eiχ], where the
physical total cross-section is obtained from this bulk cross-section by a con-
volution. At a given z and z′, σ(s, z, z′) approaches its unitarity bound when
|χ| ∼ 1. Since interactions become weaker at larger b, this leads to an effec-
tive “disk picture”, σ(s, z, z′) ∼ b2

max.
If Im[χ] > Re[χ], as is the case for the weak-coupling Pomeron, the

point bmax is where absorption becomes of the order of one, one speaks of
a “black disk” of radius bblack, set by Im[χ] ∼ 1. If the reverse is true, then
outside the black disk, there exists a “diffractive disk”. The radius of this
disk, bdiff , is set roughly by the condition Re[χ] ∼ 1.

The separation into dominant diffusive and diffractive regions, with
bblack ≪ bdiff is a uniquely strong coupling feature [4–6]. This can already
be illustrated by working with the example of an even-signatured Regge

1 The demonstration of the DGLAP to BFKL relationship is given in [1].



Froissart Bound in Strong Coupling Limit 551

exchange in 4-dim, with A(1)(s, t) ≃ β
[

2m2
0

(πα′)(m2
0
−t)

+ i
]
(s/s0)

α(t), where

α(t) ≃ 2 + α′(t/m2
0 − 1), and α(m2

0) = 2. To mimic the strong coupling

limit, we treat α′ ∼ λ−1/2 ≪ 1.
The integral for Im[χ] is gaussian, leading to the usual “Regge diffusion”

in b. From the condition Imχ = 0(1), one has

bblack ∼ λ−1/4m−1
0 log(βs/s0) . (3)

The real part can be found easily from Reχ ≃ (2/π)eτ
∫ ∞
τ dτ ′e−τ ′

Im[χ(τ ′, b)].
When b ≪ bcross = (2α′/m0)τ , Reχ ≃ (2/πα′)Imχ, consistent with the

expected Regge phase. However, for b ≫ bcross, Re[χ(τ, b)] ∼ s e−m0b
√

m0b
, i.e.,

given by that for a J = 2 glueball exchange. From Reχ = 0(1), one finds
that the diffraction radius is

bdiff ≃ m−1
0 log(βs/s0) , (4)

and, with α′ ∼ λ−1/2 ≪ 1, bdiff >> bblack.

3. Conformal limit, confinement, and Froissart bound

We have shown in strong coupling, both in the conformal limit and the
case with confinement, Re[χ] > Im[χ] always holds at b sufficiently large
with s fixed, and, in this region, Re[χ] is given by spin-2 exchange. It
follows that

bdiff ≫ bblack (5)

and the scale for the total cross-section is always set by bdiff
2. For scattering

in conformal limit, one has bdiff ∼
√

zz′ (zz′s/N2)1/6, which leads to a total
cross-section which grows as σtot ∼ s1/3.

With confinement, the spectrum has a mass gap, which leads to a log-
arithmic growth. To be more precise, since the effects of the Pomeron cut
are short-range, the spin-2 poles dominate the physics at very large b for
fixed s and z, z′ ∼ zmax (where the hadron wave functions are largest), with
the corrections from higher-spin states only becoming important at shorter
range. Thus to understand the behavior of the cross-section, we may focus
on the spin-two glueball states. From the lightest glueball of mass m0, we
find |χ| ∼ 1 inside a radius

bdiff ≃ 1

m0
log(s/N2m2

0) + . . . . (6)

2 We are speaking of disks in the bulk, for fixed z, z
′; the corresponding disks in the

gauge theory can be found only be integrating over z and z
′.
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It is important to check whether the eikonal approximation is self-consis-
tent in the regimes we are discussing. A weak but necessary condition is that
the scattering causes deflections at small angle, which requires b be larger
than bθ≪1 ∼ 1

2m0
log(s/N4Λ2) + . . . . In other words, the area in which the

scattering amplitude is reaching its unitarity bound, and in which the eikonal
scattering is minimally self-consistent, is of order (log s)2. This provides
strong evidence that, in the strong coupling limit, the Froissart bound on
the total cross-section is not only satisfied, it is saturated.

4. Future directions

We have taken a step toward unitarization of high energy scattering using
string/gauge duality. In future, it will be important to compute a variety of
scattering amplitudes and interpret the results; [6] has recently begun this
program in the context of deep-inelastic scattering. Eventually one would
hope to extract appropriate lessons for QCD, though this will be a challenge,
given the intricate dependence of the physics on s, b, λ and N . In particular,
the approach to the region λ → 1 holds some subtleties that are yet to be
explored. One future goals is to show that the linearity approximation for the
eikonal sum holds for a sufficiently large region in impact parameter space to
prove saturation of the Froissart bound in strong coupling confining gauge
theories. By isolating the leading contribution in the gravity limit first, we
can proceed systematically to introduce the 1/

√
λ contributions to guide

the development of a dual (Gribov) Reggeon effective field theory. These
are ambitious goals but ones that have real promise to bring new clarity to
high energy hadronic physics.

I wish to acknowledge my collaborators Richard Brower, Joe Polchinski
and Matt Strassler, to whom I am much indebted.
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