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Recent results of experiment NA49 from Pb+Pb collisions at the CERN
SPS are shown on light nuclei production, on the Balance Function and
on the energy dependence of multiplicity and mean transverse momentum
fluctuations.
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1. Introduction

The main purpose of the NA49 experiment [1] at the CERN SPS is
the search for evidence of quark–gluon deconfinement in the early stage
of Pb+Pb collisions. Measurements of particle yields and mT distributions
suggest that deconfinement indeed starts in the lower SPS energy range [2–4].
The search for evidence of a first order phase transition and of the predicted
critical point of hadronic matter [5] in fluctuations is the subject of intensive
current and future [6] investigations.

2. Production of light nuclei in central Pb+Pb collisions

Production of light nuclei has traditionally been interpreted in terms
of coalescence models [7]. The production rates depend on the nucleon
density, temperature, and collective flow. Thus they provide information on
the properties of the produced fireball.

New results on 3He production in central Pb+Pb collisions at 20A–
80A GeV are shown in Fig. 1. The left panel demonstrates the clean iden-
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tification from dE/dx and M2 (computed from momentum and and time-
of-flight). The center panel displays the mT distributions at midrapidity.
Rapidity distributions, summarised in the right panel, were obtained by
integration of the mT–distribution in narrow bins of rapidity. Since the
coverage in rapidity is large, total yields have been estimated by fitting and
integrating a parabolic parameterisation (the shape predicted by the RQMD
model) up to beam rapidity.
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Fig. 1. 3He production in central Pb+Pb collisions (NA49 preliminary). Left:

energy loss dE/dx versus M2 from momentum and time-of-flight at 40A GeV.

Center: transverse mass mT dependence of invariant yields at midrapidity. Right:

rapidity dependence of yields; a parabolic fit (curves) was used to estimate total

yields.

The energy dependence of the coalescence parameter BA for deuteron
and 3He production at pT = 0 measured by NA49 is compared to results from
lower and higher energies in Fig. 2, left. One observes a gradual decrease
which indicates an increasing effective coalescence volume in the coalescence
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Fig. 2. 3He production in central Pb+Pb collisions (NA49 preliminary). Left: en-

ergy dependence of coalescence parameter BA at pT = 0 for d and 3He. Right: total
3He yields (dots) compared to predictions of the statistical hadron gas model [8]

(triangles).
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model scenario. Remarkably, one finds for total 3He yields (see Fig. 2, right)
surprising agreement with the predictions of the statistical hadron gas model
[8] using parameters fitted to meson and baryon yields.

3. Energy and rapidity dependence of the Balance Function

The Balance Function measures the range in rapidity of correlations of
oppositely charged particles [9]. A narrowing of its width was predicted as
a signature of a first order phase transition due to the long expected lifetime
of the mixed phase. At midrapidity such a narrowing was observed first at
RHIC for central Au+Au collisions and subsequently also found in central
Pb+Pb collisions at the SPS [10] (see Fig. 3, center and right). However,
the narrowing does not occur at forward rapidity (see Fig. 3, left). The
narrowing can possibly be explained by local charge conservation and strong
radial flow. Nevertheless, it is interesting that current microscopic models
of nucleus-nucleus collisions do not reproduce the effect, except for AMPT
which includes a phase transition (see Fig. 3, right).
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Fig. 3. Width 〈∆η〉 of the Balance Function for oppositely charged hadrons at

158A GeV beam energy. Experimental results are shown by full dots, shuffled

event reference by open circles and model predictions by other symbols. Left:

forward pseudo-rapidity (4.0< η <5.4); center, right: central pseudo-rapidity (2.5<

η <3.9).

4. Energy dependence of multiplicity and 〈pT〉 fluctuations

Significant non-statistical event-by event fluctuations may occur for the
multiplicity and 〈pT〉 of particles if they are produced near a first order
phase transition or a critical point of hadron matter [11]. Since a deconfined
state appears to be reached in central Pb+Pb collisions in the low SPS
energy range, a search for such fluctuations has been the subject of intense
investigation.

No structure is observed in the energy dependence of multiplicity fluc-
tuations in the SPS energy range. Fig. 4 shows that the scaled variance
ω of the multiplicity distribution is near unity (Poisson distribution). This
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holds also for the low pT range (Fig. 4, right), which is expected to be most
sensitive to effects of the critical point (0.1 units increase of ω [11]). The
energy dependence of the 〈pT〉 fluctuation measure ΦpT

is plotted in Fig. 5.
Again there is no indication of the expected increase of about 8 MeV/c [11].
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Fig. 4. Energy dependence of the scaled variance ω of the multiplicity distribution

of negative hadrons in the 1% most central Pb+Pb collisions. Data are shown by

squares, UrQMD model predictions by dots; c.m.s. rapidity interval 0<y<1 (left);

1<y<ybeam (center); 1<y<ybeam and pT < 0.5 GeV/c (right), (NA49 prelimin.).
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Fig. 5. Energy dependence of the 〈pT〉 fluctuation measure ΦpT
in the rapidity

region 1.1<yπ <2.6 in the 7.2% most central Pb+Pb collisions. Left: data points

and UrQMD model prediction (curve) for all pT. Right: for pT <0.5 GeV/c, (NA49

preliminary).
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