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Relativistic covariance of a Langevin type equation is discussed. The
requirement of Lorentz invariance generates an entanglement between the
force and noise terms so that the noise itself should not be a covariant
quantity.
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1. Introduction

When a stochastic dynamics is involved in a relativistic process, it is
not trivial to formulate the problem in a Lorentz invariant way. A typical
example is a cascade calculation for a many particle system in a relativistic
energy, such as relativistic intra-nuclear cascade or parton cascade models.
These calculations are not covariant and the difference in the time-ordering
of collisions in cascade calculation even affects the equilibrium distribution
in momentum space as shown below.

Consider thermal equilibration among N cascading relativistic particles
in a box of volume V . To proceed the cascade calculation, we first establish
the timetable of every possible binariy collisions, then perform the collisions
one by one according to the timetable. After each collision, the momenta
and the timetable should be up-dated [1]. In the homogeneous case where we
are only interested in the momentum distribution, one might think that the
cascade process can be replaced by choosing the binary collision randomly.
This is equivalent to the assumption of molecular chaos in the case of Boltz-
mann equation, so one expects the resulting single particle distribution to
be that of Boltzmann, dN/dp3 ∝ e−βE .

After a large enough number of binary collisions, it is seen that the sin-
gle particle spectrum in fact converges, but to e−βE/E rather than the
Boltzmann distribution, as seen in Fig. 1(a). This is somewhat an expected
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result, since in this calculation, collision events are assumed to occur homo-
geneously in momentum space without information of the space distribution
of the particles so what we obtain will be the same as the single particle
distribution in invariant phase volume calculation [2]. There, the normal-
ization of the distribution function is defined by

∫

d3p f (~p) = const. In this
case, since d3p/E is a scalar measure, Ef (p) should be a Lorentz scalar.

Fig. 1. Single particle spectra of relativistic cascade calculation. (a) The results of

random collisions in the momentum space. The upper line corresponds to Ef(E).

(b) The result of space-time cascade calculation, showing the Boltzmann distribu-

tion.

On the other hand, if we really perform the binary collisions following all
the particle trajectories using the covariant impact parameter method [1],
the single particle spectrum recovers the usual Boltzmann distribution as
seen in Fig. 1(b). Here the single particle distribution is normalized together
with the space part as

∫

d3~r
∫

d3~p f (~r, ~p) = const. so that V f (~p) is a scalar,
where V is the volume of the system. The above example shows a quite in-
teresting feature of cascade type calculations with respect to the Lorentz
covariance and the single particle spectra. It is worthwhile to investigate
more precisely the time evolution and Lorentz covariance of single particle
distribution in such a system. For non-relativistic cases, the Langevin equa-
tion for a Brownian motion is a useful approach to investigate the dynamics
of single particle distribution of stochastic processes. In this work we discuss
the relativistic generalization of the Brownian motion [4].

2. Lorentz covariance of relativistic Brownian motion

We consider the Brownian motion of a relativistic particle with mass m
in the 3+1 dimension described by the stochastic differential equation (SDE)
defined on the discretized time sets, {t∗i = i dt∗, i = 0, 1 , . . .}

dx∗ =
p∗

p0∗
dt∗ , dp∗ = −ν(p0∗)p∗dt∗ +

√

2D(p0∗) dwt∗ . (1)
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where the stochastic variable dwt∗ satisfies the usual properties of Gaus-
sian noise, 〈dw∗

t∗
i

〉0 = 0, 〈dwi∗
t∗
k

dw
j∗
t∗
l

〉0 = dt∗δijδkl. Eq. (1) contains the

multiplicative noise and the solution depends on the integration scheme of
the stochastic term. Here we consider the three different schemes of Ito,
Stratonovich–Fisk and Hänggi–Klimontovich [3].

From the SDE and the integration rules above, we can construct the
corresponding Fokker–Planck equation and obtain the equilibrium form of
the distribution function. It is given as

ρst(x
∗,p∗) ∝ exp






−

p∗

∫

C

dq·
q ν(q0∗)

D(q0∗)
− α ln D

(

p0∗
)






. (2)

Here, the parameter α takes the values 0, 1/2 and 1, corresponding to the
cases of Hänggi–Klimontovich, Stratonovich–Fisk and Ito scheme, respec-
tively.

Now, let us consider the reference frame which is moving with the velocity
V with respect to the rest frame of the heat bath (we refer to as simply
MF-moving frame). The four-momentum dpµ in this frame is then given
by the Lorentz transformation of dp∗µ. Using the on mass-shell condition
dp0 = −p · dp/p0, we get the SDE in the MF which contains the stochastic
term. However, the stochastic term is defined only in the rest frame of the
bath. We now assume that, even after the Lorentz boost, the stochastic part
of the Brownian motion still preserves the property of the Gaussian white
noise, which is defined by 〈dwt〉V = 0 and 〈dwi

tl
dw

j
tm〉V = dtδijδlm. Here

the symbol 〈X〉V denotes the stochastic average of X in the MF. Now, it is
important to note that the statistical average of the noise term defined in
the different reference frame does not necessarily vanish. For example, we
may have 〈dw∗

t∗〉V 6= 0. The reason is that dw∗
t∗ is non-local in the time t

so that the Lorentz transformation entangles with the integration scheme.
This implies that the force part and the stochastic part can be mixed in the
order of dt. Thus we have

dw∗
t∗ = γ1/2(V )

√

p0 − β(V )pV

p0
dwt + Cp dt . (3)

Here the non-vanishing average, Cp dt is separated from the pure stochastic
part dwt. The corresponding Langevin equation is given by

dpi = −
ν(uµpµ)

p0

{

p0(pi − β(V )nip0) + β(V )(p2ni − pV pi)
}

dt

+(1 − α)
∑

jk

B̃
jk

∂j
p
B̃

ik
dt + [BCp]

idt +
[

B̃dwt

]i
, (4)
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where B̃ =
√

γ(V )(p0 − β(V )pV )/p0B. Now we can derive the correspond-
ing Fokker–Planck equation and its equilibrium distribution. We know that
the distribution function is a Lorentz scalar, so that the equilibrium distri-
bution should be equal to the one given in Eq. (2). From this, we find the
vector Cp should satisfy [4]

C⊥
p

= −(1 − α)

√

D(uµpµ)

2

β(V )γ(V )

(p0)2
pV − β(V )p0

p0 − β(V )pV
, (5)

C
‖
p =

β (V )

(p0)2

√

D(uµpµ)

2

[

αm2

p0 − β(V )pV

+ 2(1 − 2α)2γ(V )(p0 − β(V )pV ) + (1−α)γ(V )
{(

p2

p0
−β(V )pV

)

−
(

p0pV −β(V )p2
) 1

p0

pV −β(V )p0

p0−β(V )pV

}

]

, (6)

where we decompose Cp into the longitudinal and transversal components,

Cp = C⊥
p
(p − pV n) + C

‖
pn. We conclude that in order to keep the scalar

property of the equilibrium distribution function, Cp cannot be null, which
is a new result.

In this work, we discussed the generalization of the Brownian motion of
a relativistic particle. The covariance of the SDE requires that the noise must
be essentially multiplicative in a general frame. The Lorentz boost induces
a non-trivial entanglement between the force term and the noise term. We
demonstrated that the commonly used Lorentz invariant noise does not lead
to an invariant equilibrium distribution in the present formulation of the
relativistic Brownian motion.
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