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We calculate the probability of large rapidity gaps in high energy hadro-
nic collisions using a model based on QCD minijets and soft gluon emission
down into the infrared region. Comparing with other models we find a re-
markable agreement among most predictions.
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1. Introduction

The possibility of the existence of large rapidity gaps in hadronic colli-
sions was suggested a number of years ago [1, 2]. In [1], the occurrence of
rapidity regions deprived of soft hadronic debris was proposed as a means to
search for Higgs bosons produced by interactions between colour singlet par-
ticles, e.g. W,Z bosons emitted by initial state quarks, but with a warning
against the possibility of soft collisions which would populate these regions.
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For an estimate, an expression for the Large Rapidity Gaps Survival Prob-
ability (LRGSP) was proposed, namely

〈

|S|2
〉

=

∫

d2
b AAB(b, s)|S(b)|2σH(b, s)

∫

d2b AAB(b, s)σH(b, s)
, (1)

where |S(b)|2 is the probability in impact parameter space that two hadrons
A,B got through each other without detectable inelastic interactions,
AAB(b, s) is the b-distribution for collisions involved in interactions in which
only low pt particle emission can take place, and σH(b, s) is the cross-section
for producing, say, a Higgs boson, in such hadronically deprived silent con-
figuration. To use the above equation, one needs to estimate the probability
of not having inelastic collisions, |S(b)|2 = Pno−inel(b) and the distribution
for low-pt interactions, namely the probability AAB(b, s) to find those colli-
sions for which two hadrons A and B at distance b will not undergo large pt

collisions. Introducing for the scattered partons a cut-off ptmin, above which
the scattering process can be described by perturbative QCD, we need to
estimate the b-distribution of all the collisions with pt < ptmin. In order to
calculate Pno−inel, one can approximate the bulk of hadron–hadron collisions
with a sum of Poisson distributions for k independent collisions distributed
around an average n̄ ≡ n(b, s), namely

Pno−inel = 1 −
∑

k

Π {k, n̄} = 1 −
∞

∑

k=1

n̄ke−n̄

k!
= e−n(b,s) (2)

which also leads to the following expressions for the total and inelastic cross-
sections

σAB
inel =

∫

d2
b

[

1 − e−n(b,s)
]

(3)

and

σAB
tot = 2

∫

d2
b

[

1 − e−
n(b,s)

2 cos Reχ(b, s)
]

, (4)

where n(b, s)/2 can be identified with the imaginary part of the eikonal
function χ(b, s). Approximating Re χ(b, s) = 0, allows a simple way of cal-
culating σtot if one has a model for n(b, s). A possible strategy to calculate
the LRGSP is then to build a model for the total cross-section and then
insert the relevant b-distributions in Eq. (1). The basic quantity to evaluate
is thus

n(b, s) = nNP(b, s)+nhard(b, s) = ANP(b, s)σNP(s)+Ahard(b, s)σhard(s) , (5)
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where we have split the average number of collisions between those with
outgoing partons below (NP) and above (hard) the cut-off ptmin. In the next
section we shall describe our model [3, 4] for total cross-section, comparing
its results to other models. Then, we shall use the b-distributions from our
model to evaluate the LRGSP at LHC, again comparing it to different model
results.

2. The eikonal minijet model for total cross-section

To build a realistic model for σtot, one needs to understand what makes
the cross-section rise with a slope compatible with the limits imposed by
the Froissart theorem, namely σtot ≤ log2 s. In our model, the rise in σtot is
driven by the rise of low-x (perturbative) gluon–gluon interactions, while
the saturation imposed by the Froissart bound comes from initial state
emission of infrared gluons which temper the too fast rise of the minijet
cross-section. The rise is calculated using perturbative QCD for collisions
producing partons with pt > ptmin ≈ 1 ÷ 2 GeV, using hard parton scatter-
ing cross-sections, and the experimentally measured and DGLAP evolved
parton densities (PDF’s) in the scattering hadrons. Thus parton densities
and the elements of perturbative QCD are the only input needed for the
calculation of σhard. The rate of rise of this cross-section with energy is de-
termined by ptmin and the low-x behaviour of the parton densities. As noted
before, the rise with energy of the cross-section obtained with this is much
steeper than that consistent with the Froissart bound, but in our model this
rise is tempered by soft gluon emission. The saturation mechanism takes
place through the b-distribution obtained from the Fourier transform of the
resummed infrared gluon distribution. This distribution is energy dependent
and given by [5]

A(b, s) = A0

∫

d2
Kte

−iKt·bΠ (Kt) =
e−h(b,qmax)

∫

d2be−h(b,qmax)
≡ ABN(b, qmax) ,

(6)
where the function h(b, qmax) is obtained through summing soft gluons [5]
and requires integration of soft gluon momenta from zero to qmax the max-
imum transverse momentum allowed by kinematics to single soft gluons.
The saturation of the Froissart bound is due to the increasing acollinearity
of “hard” partons produced by initial state soft gluon emission. The single
soft gluon distribution needed for the calculation of h(b, qmax) requires using
infrared kt gluons and different models with a frozen or singular αstrong(kt)
produce different saturation effects. We have shown [6] that the frozen model
is inadequate to quench the rise due to minijets, since we see that the early
rise in proton–antiproton collisions requires minijets with ptmin ≈ 1 GeV,
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but then the total cross-section rises too much. Put differently, but equiv-
alently, raising ptmin to fit higher energy values of the cross-section, say at
the Tevatron, would require ptmin ≈ 2 GeV but miss the early rise. Instead,
we find that a singular αs produces an adequate s-dependent saturation ef-
fect. Singular expressions for αs are discussed in the literature, in particular
for quarkonium phenomenology [7]. Our choice is a singular, but integrable
expression for the strong coupling constant in the infrared region, namely

αs(kt) ≈
12π

33 − 2Nf

(

ΛQCD

kt

)2p

, kt → 0 , (7)

where the scale factor is chosen to allow a smooth interpolation to the asymp-
totic freedom expression for αs, namely we choose

αs(kt) =
12π

33 − 2Nf

p

log

(

1 + p
(

kt
ΛQCD

)2p
) . (8)

The singularity in the infrared is regulated by the parameter p, which has
to be < 1 for the integral in h(b, qmax) to converge. The next input for
phenomenological tests of our model is the number of non-perturbative (NP)
collisions. We approximate it as

nNP = ANP
BNσ0

(

1 +
2ǫ√
s

)

(9)

with ǫ = 0, 1 for the process pp or pp̄. We choose a constant σ0 ≈ 48 mb
and use for ANP

BN the same model as for the hard collisions, but we restrict
qmax to be no larger than ≈ 20%ptmin, since these collisions are limited to
pt < ptmin. The same function ANP

BN is then used for the LRGSP calculation,
as discussed in the next section where both the estimated σtotal as well as
the LRGSP will be presented and compared with other models.

3. Total cross-sections and survival probability

Applying the above described model to the calculation of total cross-
sections, gives the results shown in the left panel of Fig. 1. To obtain this
figure, we have used different PDF’s and slightly different values for the
parameters p, σ0 and ptmin and the variations are indicated by the band. We
have shown [3] that the asymptotic behaviour of this cross-section can be
fitted with a log2 s type behaviour. This is a phenomenological confirmation
that the model satisfies Froissart bound.
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Fig. 1. Total cross-section data [8] and models [9] (left) and survival probability for

large rapidity gaps for different models [10] (right).

We do not see in our model any hard Pomeron behaviour beyond the
initial rise and predict a value σLHC

tot = 100+10
−13(mb). The LRGSP can now

be calculated using the two quantities e−n(b,s) and ANP
BN(b, s) which were

input in the calculation of the total cross-section. The right panel of Fig. 1
shows such evaluations, with the pale grey (yellow) band corresponding to
various MRST densities [11], the central full line to using GRV densities [12]
and the other lines and bands representing comparisons with other models,
as indicated. The most interesting result of this figure is that the predictions
for LHC agree reasonably well amongst each other, namely |S|2 = 5÷ 10%,
in spite of the fact that the various models differ greatly in details and the
way in which they achieve results for total cross-sections consistent with the
Froissart bound. Thus the model estimates for the LRGSP are quite robust.

4. Conclusions

We have built a model for σtot which incorporates hard and soft gluon
effects, satisfies the Froissart bound and can be used reliably to study other
minimum bias effects e.g. the Survival Probability of Large Rapidity Gaps.
It can also be extended to calculations of total γp and γγ cross-sections.

One of us, G.P., wishes to thank the Boston University Theoretical
Physics Department for hospitality during the preparation of this talk.
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