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We discuss the energy dependence of the total charm cross-section and
some of its theoretical uncertainties including the quark mass, scale choice
and the parton densities. We compare the next-to-leading order calculation
of the total cross-section with results obtained using PYTHIA.
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1. Introduction

Extracting the total charm cross-section from data is a non-trivial task.
Early fixed-target data were at rather low pT, making the charm quark mass
the most relevant scale. At proton and ion colliders, although the RHIC
experiments can access the full pT range and thus the total cross-section,
the data reach rather high pT, pT ≫ m, making pT (mT) the most relevant
scale. Here we focus on the total cross-section calculation where the quark
mass is the only relevant scale.

2. Next-to-leading order pQCD

The hadronic cross-section in pp collisions can be written as

σpp(S,m2)=
∑
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where x1 and x2 are the fractional momenta carried by the colliding par-
tons and fp

i are the proton parton densities. The partonic cross-sections [1]
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include qq and gg initial states at both O(α2
s ) and O(α3

s ) as well as qg
and qg interactions at O(α3

s ). At high energies the qq and the O(α2
s ) gg

contributions are small while the O(α3
s ) gg and qg contributions plateau at

finite values. Thus, at collider energies, the total cross-sections are primarily
dependent on the small x parton densities and phase space.

The perturbative parameters are the charm quark mass and the value
of the strong coupling, αs, while the parton densities are a nonperturbative
input. We take m = 1.5 GeV as the central value and vary the mass be-
tween 1.3 and 1.7 GeV to estimate the mass uncertainties. The perturbative
calculation also depends on the unphysical factorization (µF) and renormal-
ization (µR) scales. The sensitivity of the cross-section to their variation
can be used to estimate the perturbative uncertainty due to the absence
of higher orders. Since Eq. (1) is independent of the kinematics, we take
µR,F = µ0 = m as the central value and varied the two scales independently
within a ‘fiducial’ region defined by µR,F = ξR,Fµ0 with 0.5 ≤ ξR,F ≤ 2 and
0.5 ≤ ξR/ξF ≤ 2. In practice, we use the following seven sets: {(ξR, ξF)}
= {(1,1), (2,2), (0.5,0.5), (1,0.5), (2,1), (0.5,1), (1,2)}. The uncertainties
from the mass and scale variations are added in quadrature. The envelope
containing the resulting curves defines the uncertainty.

The energy dependence of the total cross-section, calculated with the
CTEQ6M parton densities [2], is shown on the left-hand side of Fig. 1.
The central value is indicated by the solid curve while the upper and lower
edges of the band are given by the dashed curves. The dotted curve on the
left-hand side is calculated with µF = µR = 2m and m = 1.2 GeV. The
uncertainty band broadens as the energy increases. The lower edge of the
band grows more slowly with

√
S above RHIC energies while the upper edge

is compatible with the reported total cross-sections at RHIC [3, 4].
Next, we discuss the influence of the parton densities on the theoretical

uncertainty. Since m is the only perturbative scale, the total cross-section
calculations are more sensitive to the low x and low µ behavior of the parton
densities. Probing the full fiducial range of the uncertainty band is problem-
atic for charm production since ξF = 0.5 is below the minimum scale of the

CTEQ6M parton densities, µCTEQ6M
0 = 1.3 GeV [2]. Thus, for this scale,

backward evolution is required. The behavior of the gluon density at low
scales and low x is atypical, especially for x < 10−2. Instead of increasing
with decreasing x, for x<0.01, the density decreases and, for ξF =0.5, xg(x)

can even become zero. This accounts for the high
√

S behavior of the lower
bound on the uncertainty band. The low x, low µF behavior of the gluon
density depends strongly on how the group performing the global analysis
extrapolates to unmeasured regions. All that is required is minimization of
the global χ2 and momentum conservation. The uncertainty band is reduced
at higher energies if the GRV98 parton densities [5] are used.



The Energy Dependence of the Total Charm Cross-Section 697

The results are extremely sensitive to the number of flavors, the scale
choice and the parton densities, see Ref. [6] for more details. One of the
biggest sources of uncertainty at collider energies is the behavior of the
gluon density at low x and low scale, as yet not well determined. Until
it is further under control, better limits will be difficult to set. A complete
NNLO evaluation of the total cross-section may reduce the scale dependence
but will still be subject to the same types of uncertainties.

Fig. 1. (Left-hand side) The NLO total charm cross-section uncertainty band in pp

interactions calculated with the CTEQ6M PDFs. The central values are given by

the solid curves while the dashed curves show the upper and lower limits of the

band. The dotted curve on the left-hand side is a calculation with m = 1.2 GeV,

µF = µR = 2m. (Right-hand side) The PYTHIA total charm cross-section in pp

interactions. The long-dashed line is the pair creation contribution, the short-

dashed line, flavor excitation, and the dotted line, gluon splitting. The sum of the

three contributions is given by the solid line [9].

3. PYTHIA calculations

The PYTHIA code [7] has been used extensively to simulate charm pro-
duction as an alternative to NLO calculations. Since PYTHIA is a leading-
order code, to simulate the NLO contributions to heavy flavor production,
in addition to the standard leading order pair creation processes, separate
calculations of NLO-type processes have to be done. These additional pro-
cesses are referred to as ‘flavor excitation’ and ‘gluon splitting’ and differ
from pair creation by the number of charm quarks in the hard scattering.
Pair creation has two charm quarks, flavor excitation has one and gluon
splitting has none. Careful separation between the processes is necessary to
avoid double counting. However, if done carefully and multiple interactions
are turned off while transverse momentum broadening with 〈k2

T〉 = 1 GeV2
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is implemented, the LO kinematic distributions are essentially identical to
those calculated with PYTHIA. Furthermore, the NLO distributions for both
QQ pair and single inclusive quantities are very similar to the PYTHIA re-
sults with ‘excitation’ and ‘splitting’ included. The only difference in shape
appears in the azimuthal angle distributions [8]. The PYTHIA cross-section
is somewhat larger than the NLO since it has no interference effects for
processes with identical initial states: ‘pair creation’; ‘flavor excitation’ and
‘gluon splitting’ all contribute to the gg channel at NLO. See Ref. [8] for
more details.

The right-hand side of Fig. 1 shows the individual contributions to the
total charm cross-section obtained using PYTHIA. The energy dependence of
the total cross-section is very similar to the NLO dependence. Note that
already at rather low energies, the cross-section is not dominated by pair
creation but by flavor excitation. At LHC energies, gluon splitting also
overtakes pair creation.
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