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We study the proton–neutron RPA with an extended Lipkin–Meshkov–
Glick model. We pay attention to the effect of correlated ground state and
the case when neutron and proton numbers are different. The effect of the
correlated ground state is tested on the basis of quasi-boson approxima-
tion. We obtain the result that the RPA excitation energies and transition
strengths are in a good agreement with the exact solution up to a cer-
tain strength of the particle–particle interaction. However, the transition
strength shows deviations from the exact solution if we consider the case in
which neutron and proton numbers are different even at a weak particle–
particle interaction.
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1. Introduction

The random phase approximation (RPA) is one of the useful approaches
to describe a collective motion of nuclei and helps us to understand the ba-
sic mechanism of nuclear excitations. Its application to charge exchange
reaction is widely used in calculations of neutrino–nucleus reactions [1],
β-decay [2] and isospin symmetry breaking [3]. The RPA is able to provide
basic physical insights of nuclear excitations by its simple picture of coherent
1 particle–1 hole (1p1h) excitations on the one hand, it does not describe
coupling to more complicated states, like phonon coupling as well as multi-
particle multi-hole states on the other hand. Therefore, several approaches
beyond the RPA have been also studied, for example, particle-vibration cou-
pling [4], finite-rank separable approximation [5], second RPA [6,7] and the
Tamm–Dancoff-approximation (TDA) [8].
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To take into account the higher order correlation beyond the RPA, there
is another approach which focuses on the ground state. When one derives
the standard RPA, the RPA ground state, namely, the correlated ground
state, is replaced with the Hartree–Fock (HF) one. This prescription omits
a part of the multi-particle multi-hole effects. In this respect, several ex-
tensions of the RPA to include the correlation have been studied. Renor-
malized RPA [9], which considers renormalized single particle states invoked
by a correlated nuclear ground state, is a leading example. While using the
correlated ground state is more practical to describe the nuclear collective
vibration than using the HF ground state, it is pointed out that the ground
state correlation is not so significant in the case of the charge exchange re-
actions. This is because proton and neutron have different Fermi energies
and occupy different shells. This might be true for heavy N > Z nuclei. In
fact, the proton–neutron RPA calculation for N > Z nuclei shows almost
the same result as the proton–neutron TDA calculation, which implies the
ground state correlation is weak enough. However, we should keep in mind
that the RPA for a specific transition does not take into account all the
ground state correlation.

In order to check the validity of the uncorrelated ground state, it would be
one of the reasonable ways to study the RPA with an exact solvable model
before investigating a practical case. The Lipkin–Meshkov–Glick (LMG)
model [10] can be a good tool for this end because it enables us to com-
pare the model with the exact solution in a simple model space. It has
been widely used so far to validate various kinds of models with interests
[11–14]. To check the validity of the RPA in the case of charge exchange re-
actions, the LMG model on the SU(2)×SU(2) basis was studied by Stoica’s
group [15, 16]. According to their results, the RPA works well in case of a
large nucleon number system, if the particle–particle interaction is relatively
weak enough. They also considered the effect of correlated ground state
up to the first order [17]. In this formalism, the ground and excited states
of mother and daughter nuclei are first calculated with the RPA, and then
the transition between them are considered. They compared the transition
strengths calculated by the RPA on the basis of the correlated ground state
with the exact solutions, and showed that the RPA works reasonably well.
Then the next question is whether the same result can be obtained in the
case of the proton–neutron RPA. It should be mentioned that reliability of
the RPA and quasi-particle RPA (QRPA) as well as renormalized QRPA
for charge-exchange reactions has been also investigated in several different
ways [18–21].

In this work, we present the effect of the correlated ground state charac-
terized by the phonon operator of the proton–neutron RPA with the LMG
model on the SU(2)×SU(2) basis. What is different from Ref. [17] is that
charge exchange phonon creation operators are used to construct the excited



Proton–Neutron Random Phase Approximation Studied . . . 133

and the correlated ground states. We particularly pay attention to nuclei
with different neutron and proton numbers. Our formalism is based on the
work of Ref. [16], however they did not investigate the effect of the corre-
lated ground state. As shown in the next section, we obtain the different
result from N = Z nuclei in the case of N 6= Z. A very similar work has
been performed in the case of SO(5) group [21, 22], but the present work
using SU(2)×SU(2) will give another insight into the effect of the correlated
ground state.

This paper organizes as follows. Section 2 describes our formalism briefly.
Section 3 shows the result and compares the RPA with the exact one and
Sec. 4 gives summary of this paper.

2. Calculation

Our model is almost the same as the work of Ref. [16]. However, we would
like to describe some key points briefly. We use the SU(2)×SU(2) group
algebra characterized by T (1)

+ , T
(1)
− , T

(1)
z , T

(2)
+ , T

(2)
− , T

(2)
z defined in [16]. Let

us consider two levels each for proton and neutron. As defined in Ref. [16],
p+(n+) and p−(n−) are the symbols representing the higher and the lower
levels of proton (neutron). The Hamiltonian considered in this work is

H=ε(Tz(1)+Tz(2))+Vpn

(
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(1)
where ε is the energy difference between the lower and higher levels of proton
and neutron. The third and forth terms of Eq. (1) are the particle–particle
and particle–hole interactions. To diagonalize the Hamiltonian, we consider
the following basis as the set of the eigenvectors,

|µ〉 =
∣∣∣T (1), T (1)

z

〉
⊗
∣∣∣T (2), T (2)

z

〉
, (2)

where the index µ stands for µ = (T
(1)
z , T

(2)
z ). T (1) = Nn/2 and T (2) = Np/2,

where Nn and Np are the neutron and proton numbers. The uncorrelated
ground state is then given by |0〉 ≡ |T (1),−T (1)〉⊗|T (2),−T (2)〉. The Hamil-
tonian given in Eq. (1) can be exactly diagonalized by the linear combination,

|Ψi〉 =
∑
µ

cµi|µ〉 , (3)

where i stands for eigenstates. The RPA formalism is also the same as in
Ref. [16]. To take into account the correlated ground state, we follow the
same prescription as [9, 11,17]. Up to the first order, it is given by

|RPA〉 ∼ N0

(
1− 1

2N

√
ε−Ω
ε+Ω

Θ†Θ†

)
|0〉 , (4)
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where N = Nn +Np, Ω > 0 is the eigenvalue of the RPA equation, and N0

is the normalization factor satisfying 〈RPA|RPA〉 = 1. The second term of
Eq. (4) takes into account 1 proton particle 1 neutron particle–1 proton hole
1 neutron hole [πν(πν)−1] configurations in addition to the 0 particle–0 hole
configuration appearing in the first term1. In what follows, we refer to results
using Eq. (4) as RPA(corr.). The transition strength for β− transition in
RPA is then given by

T− =
∣∣〈1 ∣∣M+

∣∣RPA〉∣∣2 ∼ ∣∣〈1 ∣∣M+
∣∣ 0〉∣∣2 , (5)

where |1〉 = Γ †|RPA〉 ∼ Γ †|0〉 and the transition operator M+ =

χ+
∑

i,j,σ,σ′ a
†
piσanjσ′ is given in [16]. The phonon operator Γ † is given by

Eq. (8) of [16] in the case of the RPA, and denominator is replaced by√
〈RPA|[Θ−, Θ+]|RPA〉 in the case of RPA(corr.). The second and third

equations of Eq. (5) correspond to that of the RPA(corr.) and RPA, re-
spectively. Similarly, the transition strength for β+ transition is given by

T+ = |〈1|M−|RPA〉|2 ∼ |〈1|M−|0〉|2 . (6)

3. Result

First of all, we discuss the case in which neutron and proton numbers
are the same. Figure 1 shows the excitation energy of Nn = Np = 5 (the left
panel) and Nn = Np = 20 (the right panel). We set the model parameter of
the particle–hole interaction as NWpn = −0.2. We also compare our result
with the TDA which can be obtained in the RPA by setting the backward
amplitude Y = 0. The RPA and RPA(corr.) results show a similar curve
to the exact one at a small NVpn. At NVpn ∼ 1.8 (critical point), both
the RPA and RPA(corr.) collapse due to the phase transition, however,
RPA(corr.) shows a larger critical point than the RPA. The RPA(corr.)
result is closer to the exact one than RPA one, both for Nn = Np = 5 and
Nn = Np = 20, but the difference between RPA and RPA(corr.) is smaller
in the case of Nn = Np = 20. Namely, the effect of the correlated ground
state becomes not so significant for nuclei with larger number for wide range
of NVpn. The TDA, which shows the constant straight line as a function of
NVpn, deviates both from RPA and the exact solution above approximately
NVpn = 0.2. This result means that the ground state correlation resulted
from the particle–particle interaction is important, as already mentioned in
Ref. [16].

1 Equation (4) also includes 2 proton particles–2 neutron holes and 2 neutron particles–
2 proton holes configurations. However, they are not important because the Hamil-
tonian of Eq. (1) does not allow to form such a configuration in the ground state.
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Fig. 1. Excitation energies in the case of Nn = Np = 5 (left) and Nn = Np = 20

(right) as a function of NVpn. The thick solid, thin solid, dashed, and dotted lines
are the results for the exact, RPA(corr.), RPA, and TDA.

Figure 2 shows the transition strengths of the system of Nn = Np = 5
(the left panel) and Nn = Np = 20 (the right panel). Both the RPA and
RPA(corr.) show a similar result to the exact solution from NVpn = 0 to
∼ 1.0. Above NVpn = 1.0, the RPA collapses rapidly due to the phase tran-
sition. The RPA(corr.) also collapses at a higher NVpn than the RPA. The
difference between them is, however, not as large as the excitation energies
shown in Fig. 1. Namely, the effect of the correlated ground state is not sig-
nificant both for small and large nuclei for a wide range of NVpn. Again, the
TDA shows a large deviation from the RPA and the exact solution, similar
to the excitation energies.
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Fig. 2. The same as Fig. 1, but for transition strengths.

Next, we discuss the case of Nn 6= Np. We keep Np = 20 and vary
the neutron number from Nn = 24 to 32. The results are shown in Fig. 3.
The left and right panels illustrate the excitation energies and the transition
strengths, respectively. The difference of the excitation energy between the
RPA, RPA(corr.) and the exact solution does not change significantly even
if we change the Nn. The variations of the critical points of the RPA and
RPA(corr.) are also small between different Nn. However, the result of the
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transition strength shows a different tendency from the excitation energy.
Looking at the right panels, the difference between the RPA and the exact
solution becomes larger as Nn increases. The difference already starts at
a small NVpn in the case of Nn = 32. Let us remind that in the case of
Nn = Np, the RPA and RPA(corr.) showed a good agreement with the
exact solution as seen in Fig. 2. The RPA(corr.) remedies the RPA result
to some extent, but the difference from the exact one can be still seen.
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Fig. 3. Excitation energies (left panels) and transition strengths (right panels) in
the case of Nn = 24 (top), Nn = 28 (middle) and Nn = 32 (bottom) as a function
of NVpn. The thick solid, thin solid, dashed, and dotted lines are the results for
the exact, RPA(corr.), RPA, and TDA, respectively.
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We have also investigated the non-energy weighted sum-rule of charge ex-
change reaction defined by T−−T+. The result is shown in Fig. 4. While the
RPA perfectly satisfies the total sum-rule, which must be equal to Nn −Np,
up to the critical points, RPA(corr.) does not. The reason would be attri-
buted to the fact that the phonon creation operator Γ † does not consider the
transition from the excited single particle states, as discussed in Ref. [11].
The exact solution also does not seem to satisfy the sum-rule. However,
it satisfies the total sum-rule if we include the transition to other excited
states besides the first one, which cannot be treated in the RPA in two-level
model. It is clear that the difference between the RPA and the exact so-
lution becomes large when we consider the Nn 6= Np case. Analyzing the
exact solution, transition to 2 proton particles–1 proton hole 1 neutron hole
[π2(πν)−1] configurations from the ground state becomes important, which
cannot be connected toM+ operator from the correlated ground state given
by Eq. (4). It is expected that the second RPA, which enables us to include
such 2p2h configurations, can improve the result.
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Fig. 4. The non-energy weighted sum-rule, T−−T+ for the first excited states. The
thick solid, thin solid and dashed lines are the results for the exact, RPA(corr.),
and RPA.
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4. Summary

We investigated the validity of proton–neutron RPA with the LMG
model in SU(2)×SU(2) group. In the case when neutron and proton numbers
are the same, the RPA and RPA(corr.) works well both for small and large
nuclei when the particle–particle interaction is weak. If the particle–particle
interaction becomes strong, the RPA and RPA(corr.) results begin to de-
viate from the exact solution. On the other hand, the transition strengths
are still reproduced well. This situation changes in the case when neutron
and proton numbers are different. The excitation energies are reproduced
reasonably up to NVpn ∼ 1.5, but the transition strengths are not. It turned
out that the 2p2h configurations, which cannot be covered by the correlated
ground state used in the present formalism, start to become important from
a small NVpn value. It is expected that the extension of the model to include
such a 2p2h configuration can reduce the difference between the RPA and
the exact solution. The work on this problem is now in progress.
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