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The density dependence of the nuclear symmetry energy is of great
interest over a broad range of densities from very dilute matter in super-
novae up to very dense neutron stars. However, more information and
stronger constraints on the symmetry energy below and above saturation
density are needed. An important way to investigate the symmetry en-
ergy is to perform heavy-ion collisions. In this contribution, we give an
overview of the methods to extract the symmetry energy with transport
theories. We discuss the role of fluctuations in transport approaches to
describe the production of light clusters and intermediate mass fragments.
We discuss, in more detail, three representative examples: the equilibration
of the isospin in peripheral collisions between nuclei of different asymmetry,
the pre-equilibrium emission of light clusters in the compression stage of
a collision, and the isospin flow at high density. We summarize with the
discussion of presently known constraints and open questions about the
symmetry energy with emphasizing the need of more data from heavy-ion
collisions and from astrophysical observations.
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1. Introduction

The Equation of State (EoS) of nuclear matter has been an object of
great interest for many years. The symmetry energy (SE) is the term of the
strong interaction part of the EoS which arises due to an asymmetry between
neutrons and protons. It is crucial to realize that the symmetry and Coulomb
energies are critical for the structure of any asymmetric nuclear system: from
stable and exotic nuclei to astrophysical objects. Therefore, one is interested
in the symmetry energy (SE) in a large range of density from dilute systems,
as in supernovae, up to very dense matter in neutron stars. Very asymmetric
nuclear matter can be studied by observing astrophysical objects, especially
supernovae and neutron stars. However, a stellar event is not observed
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frequently. In the laboratory, the nuclear EoS can be studied by performing
heavy-ion collisions (HIC). These allow to choose within limits the nuclear
density reached and the isotopic composition. On the other hand, HICs are
non-equilibrium processes, which require a complex interpretation with the
help of transport theories.

In this contribution, we want to give a compact overview of the methods
of interpretation of HICs by transport theories and examples of the results,
in particular, with respect to the symmetry energy (SE). For recent more
extensive reviews, see e.g. Refs. [1, 2]. We will first define the nuclear EoS
and the SE, and discuss why the latter is important. Then we will explain
why to study the EoS in HICs and the methods to describe these collisions as
non-equilibrium processes, namely transport theories. We will then discuss
the role of fluctuations and their importance for fragmentation. We will
then give some examples of investigations of the SE at low and high density
(respectively incident energy). Finally, we will review the present status of
knowledge of the SE and end with a summary.

2. Investigating the nuclear symmetry energy

2.1. Symmetry energy definitions and parametrizations

The nuclear SE is defined by the expansion of the binding energy per
nucleon in infinite nuclear matter in terms of asymmetry β = (ρn−ρp)/ρ as

E(ρ, β) = Enm(ρ) + Esym(ρ)β2 +O
(
β4
)
, (1)

where Enm is the energy of symmetric nuclear matter and Esym the density-
dependent symmetry energy due to strong interactions. If higher order terms
in β2 can be neglected, the SE can also be written as Esym(ρ) = E(ρ, 1) −
E(ρ, 0), i.e. as the difference of the energy of pure neutron matter and the
energy of symmetric nuclear matter.

Around saturation density, two parametrizations of the SE are commonly
employed

Esym(ρ) = S +
L

3

(
ρ− ρ0
ρ0

)
+
Ksym

18

(
ρ− ρ0
ρ0

)2

+ ... (2)

with the symmetry value S, the slope L and the incompressibility Ksym at
saturation, and alternatively as

Esym(ρ) = Ekin
sym(ρ) + Epot

sym(ρ) =
1

3
εF(ρ− ρ0)2/3 + C

(
ρ

ρ0

)γ
(3)

with a symmetry kinetic term from the Fermi gas and symmetry potential
term as a power law with exponent γ. L (or γ) describes how the SE changes
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with density; e.g. for a stiff SE, L is large or γ > 1. Often the terms asy-stiff,
resp. asy-soft, SE are used. Skyrme interactions allow realistic choices of the
density dependence of the SE and also of a momentum dependence, which
can be expressed by effective masses, especially important at high energies.

The SE is relevant over a large range of densities in nuclear and as-
trophysical systems. At very low density, cluster correlations depending
on the asymmetry of the system are important in the neutrino-sphere of
core-collapse supernovae [3]. In heavy-ion collisions in the Fermi energy
regime multi-fragmentation occurs, and isospin fractionation and transport
determine the isospin contents of the fragments and clusters [4]. Around
saturation density, the SE determines nuclear structures in stable and ex-
otic nuclei, e.g. masses, neutron skins, and collective phenomena, see e.g.
the corresponding articles in Ref. [2]. Here, mainly the slope L of the SE at
saturation is studied. The mechanism and evolution of core-collapse super-
novae depend on the SE for broad range of densities and temperatures [5].
The structure of neutron stars, in particular the mass–radius relation, de-
pends sensitively on the SE at high densities. This can also be studied in
the laboratory at relativistic heavy-ion collisions [1].

The nuclear EoS and the nuclear SE can be and have been calculated
in realistic many-body approaches, as discussed in this conference. A sam-
ple of calculations for symmetric and pure neutron matter is shown in the
left panel of Fig. 1 for different modern many-body approaches [6]. For
symmetric nuclear matter, the theories agree rather well below saturation.
Above saturation they diverge, but from HICs (flow and kaon production)
the symmetric EoS has been determined quite well to be rather soft. The
neutron EoS, however, is less convergent, also below saturation. The differ-
ence between the two is the symmetry energy, shown in the right panel of
Fig. 1. A large uncertainty is seen, particularly above saturation density. In
addition, there is the momentum dependence of the symmetry potential, as
it is well-known from the optical potential. The momentum dependence can
be expressed in terms of an effective mass, which leads to a difference of the
neutron and proton effective masses (effective mass splitting) [7]. The sym-
metry potential (or Lane potential) is the difference between neutron and
proton potentials. It also shows large divergences between theories and a not
very strong constraint from experimental data [8]. Thus, also the effective
mass splitting is an issue in the determination of the SE.

Due to these uncertainties of the many-body calculations, which in a
deeper analysis are seen to originate from the not well-known short-range
behavior of the isovector interaction [9], one attempts to obtain constraints
from nuclear structure (around saturation), from HICs, and from neutron
star observations.
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Fig. 1. (Color online) Left panel: The binding energy per nucleon for symmetric
nuclear matter (lower group of curves) and pure neutron matter (upper curves) as a
function of normalized density for different microscopic many-body models, which
are identified in the legend. Right panel: The symmetry energy as a function of
density as the difference between symmetric and pure neutron matter, again, for
different microscopic many-body models. From Ref. [6].

2.2. Models of transport theory

The best way to investigate Esym(ρ) in the laboratory is using HICs.
However, the EoS and the SE are concepts of equilibrium, while HICs are
dynamical processes. To deal with these, one has to use transport theo-
ries, which describe the time evolution of 1-body phase space distribution
function f(r, p; t) under the action of a mean-field potential U(r, p), possibly
momentum-dependent, and in-medium two-body collisions. The aim is a mi-
croscopic description of nucleus–nucleus collisions. The main ingredients are
individual NN collisions (Cascade model) and a self-consistent mean field
(Vlasov equation). Both considered simultaneously lead to the Boltzmann
equation and variants of it. The main comprehensive reference to transport
models is still the article by Bertsch and Das Gupta [10].

To describe the mean-field evolution, we start from the TDHF approach
and introduce the single particle density ρ(r1, r2) which obeys the TDHF
equation ∂tρ = −i[h, ρ]. To obtain semi-classical equations of motion, one
performs a Wigner transform of the single particle density, yielding the above
1-body distribution function f(r, p; t), and then uses the gradient approxi-
mation in keeping only the lowest order term of the Wigner transform of a
product. Thus we obtain the Vlasov equation, known from classical kinetic
theory, e.g. [11] (

∂

∂t
+
p

m
∇r −∇rU(r)∇p

)
f(r, p; t) = 0 . (4)
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For a realistic description of HICs, one has to include 2-body dissipation
due to NN collisions, i.e. a Boltzmann collision term. It guarantees the
conservation of momentum and energy, and includes Pauli blocking factors
f̄ := (1 − f) to respect the fermionic nature of the system. This leads to
the Boltzmann–Uehling–Uhlenbeck (BUU) or Boltzmann–Nordheim colli-
sion term [10]

Icoll =

∫
dv2dv1′dv2′ |v2 − v1|σ(Ω)(2π)3δ(p1 + p2 − p1′ − p2′)

×
[
f1′f2′ f̄1f̄2 − f1f2f̄1′ f̄2′

]
, (5)

where σ(Ω) is the total NN cross section (in medium). The collision term
replaces zero on the r.h.s. of Eq. (4) to obtain the BUU equation. As a
physical input, the BUU equation contains the self consistent mean-field
potential U and the in-medium NN cross section.

An alternative transport equation is Quantum Molecular Dynamics,
which formulates the evolution in terms of nucleon coordinates (like in classi-
cal molecular dynamics) with finite size wavepackets (QMD) [12], in contrast
to the single particle density as in BUU. It can also be derived from TDHF.

The BUU transport equation is a non-linear integral-differential equa-
tion. For low dimensional model systems, a solution on a lattice has been
used. For realistic HICs, it is common to introduce a test particle (TP)
representation of the distribution function

f(r, p; t) =
1

NTP

ANTP∑
i=1

δ(r − ri(t))δ(p− pi(t)) , (6)

where {ri(t), pi(t)} are the positions and momenta of the test particles, and
NTP is the number of TP per nucleon [10]. For a smoother representation,
also finite size TPs have been used. When introducing Eq. (6) into the
Vlasov equation, one obtains Hamiltonian equations of motion for the TP
centers and momenta. The collision term is simulated stochastically like in a
Cascade calculation [10]. In the limit NTP →∞, one obtains an exact solu-
tion of the BUU equation, which does not contain fluctuations. Extensions
to include fluctuations are discussed next.

2.3. Fluctuations in transport theories

In Fig. 2, a schematic view of the production of clusters and fragments in
a HIC at Fermi energies is shown. The colliding system undergoes compres-
sion with pre-equilibrium emission of light clusters. The following expansion
yields primary excited intermediate mass fragments (IMFs). The secondary
decay of these is usually treated in statistical models. Thus, light clusters
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Fig. 2. Schematic picture of the production of clusters and fragments in a HIC at
Fermi energies. From left to right: (1) approach phase; (2) maximum compression,
pre-equilibrium emission of nucleons and light clusters; (3) primary excited IMFs
and light clusters at freeze-out; (4) statistical decay of primary fragments.

and fragments are ubiquitous in HICs. It is seen in experimental data from
the INDRA and FOPI collaborations of the partitioning of protons in colli-
sions at 50 and 250 MeV/A. At 50 MeV, about 70% of the protons appear
not as free protons but in clusters or larger fragments, and still 50% at the
higher energy [13]. Many of these are produced dynamically during the evo-
lution, and not only by statistical decay of the primary fragments. Thus,
it is important to describe cluster and fragments production in transport
theories.

Nuclear matter has regions of spinodal instabilities. After the initial
compression, the expansion may bring the system below the critical density.
Then fluctuations will be amplified by the mean field. When the interac-
tion time is of the order of growth rates of instabilities, fragments will form
(multi-fragmentation). Thus, fluctuations are the seeds to the formation
of fragments, and similarly few-body correlations are the seeds to the for-
mation of light clusters. However, BUU does not have correlations (mean
field) and fluctuations, except numerical fluctuations due to the stochastic
evaluation of the collision term. Physical fluctuations and correlations have
to be introduced into the transport theory.

This is done e.g. in the Stochastic Mean Field method [14]. As the
colliding system starts to expand, the fluctuations are introduced in coordi-
nate space in a statistically consistent way. The variance of fluctuations is
determined by assuming a Fermi gas at local thermal equilibrium

σ2F =
16πm

√
2m

V h3
√
εFT

[
1− π2T 2

12ε2F
+ ...

]
. (7)

T is the local temperature determined from the kinetic energy density, εF the
local Fermi energy depending on density, V the cell volume. In each cell,
a random change of density is made in agreement with the variance given
by Eq. (7), conserving mass, energy and momentum. Then we apply the
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BUU procedure again to follow the evolution of the system. This method is
an approximation to the Boltzmann theory with fluctuations, the so-called
Boltzmann–Langevin equation.

3. Examples of isospin sensitive observables in HICs

In the following, we will give a few typical examples of observables, from
which one may gain information on the SE, which rely on differences of the
neutron/proton ratio during different stages of the evolution. The difference
between neutron and proton currents can be approximately expressed in the
following way [4]

jn − jp ≈ Esym(ρ)∇I +
∂

∂ρ
I∇ρ . (8)

Thus, it is driven by two effects: by isospin gradients with a strength propor-
tional to the value of the SE (“diffusion”), and by density gradients propor-
tional to the slope of the SE (“drift”). Our first example is the equilibration
of isospin in collisions of nuclei with different asymmetry; the second the ra-
tio of isospin partners in the pre-equilibrium emission of nucleons and light
clusters, and finally the momentum distribution of the emitted nucleons, the
so-called flow.

3.1. Isospin equilibration

Here, we discuss the equilibration of isospin in peripheral collisions be-
tween nuclei of different asymmetry, in this case for experiments at MSU of
n-rich and n-poor isotopes of tin, 124Sn and 112Sn, at 50 MeV/A [15]. Quan-
titatively, the amount of equilibration is measured by the isospin transport
(or Rami) ratio R = (2βAB−(βAA+βBB))/(βAA−βBB). βAB is an isospin-
sensitive observable in the reaction between nuclei A and B (here, A = 124Sn
and B = 112Sn). The observable used here is β = N/Z, the charge ratio of
the residues in the projectile or target velocity region in mixed and sym-
metric reactions. The ratio is zero for complete mixing and +1 for complete
transparency. The isospin transport is driven by the isospin gradient (diffu-
sion), and is proportional to the value of the SE, which at densities below
saturation is larger for an asy-soft SE. Thus, more mixing and a smaller R
are expected for an asy-soft SE and vice versa. Figure 3 shows two calcula-
tions of this ratio compared to the experimental value of MSU. Compared
are calculations with BUU [16] and a version of QMD [17] as a function of im-
pact parameter. Both calculations fulfill the expectation that an asy-stiff SE
leads a larger ratio (more so if the interaction is also momentum-dependent),
which is more in agreement with the experiment. However, the value and
the dependence on impact parameter differ. The results show that this ratio
is sensitive to the stiffness and momentum dependence of the SE, but also
to details of the model.
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Fig. 3. (Color online) The transport ratio describing the isospin equilibration in a
HIC between Sn nuclei at 50 AMeV of different asymmetry (see the text). Left
panel: Calculations with the BUU-type code SMF for a stiff and a soft SE, and
with (MD) and without (MI) momentum dependence [16]. Right panel: ImQMD
calculations [17] also with different asy-stiffness with different exponents γi. The
gray/green boxes represent the experimental value for this system [15].

3.2. Pre-equilibrium emission of light clusters

The second example is the pre-equilibrium emission of light clusters dur-
ing the compression stage of a collision. A characteristic observable is the
ratio of emitted neutrons to protons, as shown in Fig. 4 (left panel) for the
reaction 136Xe+124Sn at 150 MeV/A as a function of the transverse energy of
the emitted particle [18]. Higher transverse energies correspond to emission
from earlier phases of the collision. We show results of four calculations,
where the density dependence is varied from asy-soft to asy-stiff and the
effective mass from m∗

n > m∗
p to m∗

n < m∗
p. The asy-soft SE is more repul-

sive for neutrons and increases the ratio for low energies, while a smaller
effective mass facilitates the emission, which is the dominant mechanism at
higher emission energy. The possibility to disentangle the density and mo-
mentum dependence in the energy dependence of this ratio is nicely seen in
the figure. The effects are similar for the ratio of isospin partners of heavier
clusters as shown for the t to 3He ratio in the right panel of Fig. 4. Since
experimentally the efficiencies for neutrons and protons are very different,
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Fig. 4. (Color online) Left panel: Ratio of free neutron to proton yields in the
reaction 136Xe+124Sn at 150 AMeV as a function of transverse energy. Shown are
four calculations with different asy-stiffness and different effective mass splitting:
asy-soft, m∗

n > m∗
p (solid line (red)), m∗

n < m∗
p (dash-dotted line (blue)); asy-stiff,

m∗
n > m∗

p (dashed line (red)), m∗
n < m∗

p (dotted line (blue)). Right panel: The
same for the ratio of triton to 3He. From Ref. [18].

one likes to form a so-called double ratio for two different systems, to cancel
out these efficiency differences. This has recently been measured at MSU
and compared with QMD calculations [19,20]. It was shown that this double
ratio is particularly sensitive to the effective masses. The data seem to favor
an interaction where the effective neutron mass is smaller than the proton
one. It is seen that these cluster ratios are promising observables which need
to be investigated more systematically.

3.3. Isospin flow

To investigate the SE at high density, the nucleon momentum distri-
bution is an appropriate observable, since it directly reflects the nucleon
potentials. It is analyzed in terms of a Fourier series of the momentum dis-
tribution N(Θ, y, pt) = N0(v1 cos(Θ) + v2 cos(2Θ) + . . .) as a function of the
azimuthal angle Θ for fixed rapidity y and transverse momentum pt. The
first two coefficients are called directed and elliptic flow. The elliptic flow
measuring the squeeze-out perpendicular to the reaction plane is determined
mainly by the high density zone. The ratio of neutron-to-proton (actually
Z = 1) flow was recently remeasured by the ASY-EOS Collaboration [21].
In an analysis with an SE in terms of the power-law exponent γ, a value of
γ = 0.76± 0.12 was determined, corresponding to a moderately stiff SE.
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4. Conclusions and summary

The present constraints on the nuclear SE from nuclear structure and
HICs are summarized in Fig. 5. Around saturation one sees the constraints
from mass fits, isobaric analog states (see [22]; area with dotted boundary),
and heavy-ion collisions in the Fermi energy regime (as discussed above
[23, 24]; light gray area around ρ/ρ0 ≈ 0.5). The results in this region are
seen to converge well. At very low density, a finite SE as a result of clustering
of low-density matter is indicated [3]. For densities above saturation, the
results from the nucleon flow measurements, discussed in the last section, are
shown as the dark gray (red) region, while the light gray (yellow) region is
the result of an earlier measurement of the flow. Another sensitive observable
not discussed here is the pion ratio π+/π−, driven by the asymmetry of the
matter where the pions are produced, determined by the symmetry potential.
One of the results from the pion ratios is shown as the thick black/blue line,
which deviates very much from the flow result [25]. However, there are also
other analyses with other conclusions. A new experiment with more detailed
data on the pion ratios is discussed in [23].

Fig. 5. (Color online) Summary of constraints on the density-dependent symmetry
energy from the analysis of different data, as identified in the legend and discussed
in the text. From Ref. [21].

To summarize, the Equation of State of nuclear matter, and particu-
larly the symmetry energy interesting itself and also an important input
for astrophysics in the description of core collapse supernovae, neutron star
structure, and nucleosynthesis. The EoS is investigated in the laboratory
in heavy-ion collisions, and interpreted with the help of complex transport
models. Open problems are the treatment of fluctuations and correlations to



The Density Dependence of the Nuclear Symmetry Energy in Heavy-ion . . . 163

account for cluster and fragment production, the treatment of instable par-
ticles (e.g. the ∆ resonance), and the consistency of transport approaches,
which is presently investigated in a Code comparison project [26].

The EoS of symmetric nuclear matter (ρn = ρp) is fairly well-determined
by now. The symmetry energy (SE) is much less constrained, and an area of
very active investigations experimentally (new facilities) and theoretically.
The present status can be roughly summarized as follows:

(1) constraints around and below ρ0 begin to converge,

(2) clustering effects lead to a finite SE at very low densities,

(3) few experiments are available for high densities, but new ones are
forthcoming.

The high density SE is presently the biggest uncertainty.

This review article is based on the work done together with Maria Colonna,
Massimo Di Toro, LNS, INFN, Catania, Italy, Joseph Rizzo and Salvatore
Maccarone (formerly LNS), Piotr Decowski, Smith College, Northampton,
USA (unfortunately, recently deceased), and Hermann Wolter, University
of Munich, Germany, but using results also from other workers in the field.
I want to deeply thank my collaborators and, in particular, H.W. for the
help with this contribution.

REFERENCES

[1] C.J. Horowitz et al., J. Phys. G 41, 093001 (2014).
[2] B-.A. Li et al., Eur. Phys. J. A 50, 9 (2014).
[3] J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010).
[4] V. Baran et al., Phys. Rep. 410, 335 (2005).
[5] A.W. Steiner et al., Phys. Rep. 411, 325 (2005).
[6] C. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006).
[7] J. Rizzo, M. Colonna, M. Di Toro, Phys. Rev. C 72, 064609 (2005).
[8] B.-A. Li, X. Han, Phys. Lett. B 727, 276 (2013).
[9] O. Hen et al., Phys. Rev. C 91, 025803 (2015).
[10] G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988).
[11] L. Reichl, A Modern Course in Statistical Physics, 4th Edition, Wiley, 2016.
[12] J. Aichelin, Phys. Rep. 202, 233 (1991).
[13] S. Hudan et al., Phys. Rev. C 67, 064613 (2003); W. Reisdorf et al., Nucl.

Phys. A 848, 366 (2010).

http://dx.doi.org/10.1088/0954-3899/41/9/093001
http://dx.doi.org/10.1140/epja/i2014-14009-x
http://dx.doi.org/10.1103/PhysRevLett.104.202501
http://dx.doi.org/10.1016/j.physrep.2004.12.004
http://dx.doi.org/10.1016/j.physrep.2005.02.004
http://dx.doi.org/10.1140/epja/i2005-10313-x
http://dx.doi.org/10.1103/PhysRevC.72.064609
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1103/PhysRevC.91.025803
http://dx.doi.org/10.1016/0370-1573(88)90170-6
http://dx.doi.org/10.1016/0370-1573(91)90094-3
http://dx.doi.org/10.1103/PhysRevC.67.064613
http://dx.doi.org/10.1016/j.nuclphysa.2010.09.008
http://dx.doi.org/10.1016/j.nuclphysa.2010.09.008


164 M. Zielinska-Pfabe

[14] M. Colonna et al., Nucl. Phys. A 642, 449 (1998).
[15] M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).
[16] J. Rizzo et al., Nucl. Phys. A 806, 79 (2008).
[17] M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009).
[18] H.H. Wolter et al., EPJ Web Confs. 66, 03097 (2014).
[19] Y.X. Zhang et al., Phys. Lett. B 732, 186 (2014).
[20] D.D.S. Coupland et al., Phys. Rev. C 94, 011601 (2016).
[21] P. Russotto et al., Phys. Rev. C 94, 034608 (2016).
[22] P. Danielewicz, talk given at the XXIII Nuclear Physics Workshop “Marie

and Pierre Curie”, Kazimierz Dolny, Poland, September 27–October 2, 2016,
not submitted to the proceedings.

[23] M.B. Tsang, talk given at the XXIII Nuclear Physics Workshop “Marie and
Pierre Curie”, Kazimierz Dolny, Poland, September 27–October 2, 2016, not
submitted to the proceedings.

[24] Z. Xiao, talk given at the XXIII Nuclear Physics Workshop “Marie and
Pierre Curie”, Kazimierz Dolny, Poland, September 27–October 2, 2016, not
submitted to the proceedings.

[25] Z. Xiao et al., Phys. Rev. Lett. 102, 062502 (2009).
[26] J. Xu et al., Phys. Rev. C 93, 044609 (2016).

http://dx.doi.org/10.1016/S0375-9474(98)00542-9
http://dx.doi.org/10.1103/PhysRevLett.92.062701
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.307
http://dx.doi.org/10.1103/PhysRevLett.102.122701
http://dx.doi.org/10.1051/epjconf/20146603097
http://dx.doi.org/10.1016/j.physletb.2014.03.030
http://dx.doi.org/10.1103/PhysRevC.94.011601
http://dx.doi.org/10.1103/PhysRevC.94.034608
http://dx.doi.org/10.1103/PhysRevLett.102.062502
http://dx.doi.org/10.1103/PhysRevC.93.044609

	1 Introduction
	2 Investigating the nuclear symmetry energy
	2.1 Symmetry energy definitions and parametrizations
	2.2 Models of transport theory
	2.3 Fluctuations in transport theories

	3 Examples of isospin sensitive observables in HICs
	3.1 Isospin equilibration
	3.2 Pre-equilibrium emission of light clusters
	3.3 Isospin flow

	4 Conclusions and summary

