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Using the Hellmann–Feynman theorem, we calculate the potential and
kinetic energy contributions to the binding energy of symmetric nuclear
matter, neutron matter and polarized neutron matter. These energies are
used to analyze the symmetry energy of nuclear matter and the spin sym-
metry energy of neutron matter. The analysis is performed within the
Brueckner–Hartree–Fock approach using the Argonne V18 realistic poten-
tial plus the Urbana IX three-body force. The kinetic energy difference
between the correlated system and the underlying Fermi sea is used to
estimate the importance of nucleon–nucleon correlations in the different
systems concluding that at a given density, symmetric nuclear matter is
more correlated than neutron matter, and that this is more correlated than
polarized neutron matter. Our microscopic results show no indication of a
ferromagnetic transition in neutron matter.
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1. Introduction

The complexity of the nucleon–nucleon interaction and, therefore, the
corresponding one of nucleon–nucleon correlations is reflected in the richness
of the structure and excitation spectra of nuclei along the nuclide chart. One
of the central issues of nuclear physics has been always to reach a microscopic
understanding of nuclei using realistic forces. From the very beginning, it
was evident that these realistic forces have a complicated operatorial struc-
ture which depends on the spin–isospin state of the interacting nucleons, and
contain a tensor component that couples the spatial and the spin degrees of
freedom [1]. A good point to start is the microscopic study of symmetric
nuclear matter and neutron matter [2–4] which has important consequences
in the determination of neutron star interiors [5–8]. At the same time, phe-
nomenological approaches based on effective interactions have been able to
reproduce satisfactorily the binding energies of nuclei in large regions of the
nuclide chart [9] and also the properties of interior of neutron stars [10].
Many of such interactions are built to describe nuclei close to the stabil-
ity valley and, therefore, predictions far away from these conditions should
be taken with care. Skyrme ones are the most common and suitable ones
among them [11]. However, in spite of the large amount of constraints, there
is still a large dispersion on the results when using different effective forces.
Therefore, fully microscopic approaches with realistic interactions look as a
safe and necessary procedure.

Microscopic approaches start from realistic nucleon–nucleon (NN) in-
teractions that should be able to reproduce the scattering and bound state
properties of the free two-nucleon system. The in-medium correlations are
then built using many-body techniques that incorporate the effects of the
nuclear medium. In this paper, we present results obtained in the low-
est order of Brueckner–Bethe–Golstone formalism, the so-called Brueckner–
Hartree–Fock approximation [2, 3]. It should be noticed that other micro-
scopic many-body approaches have recently had a substantial progress with
a general good agreement between them [12]. One should mention here the
achievements using Self-Consistent Green’s Function [13–15], the Quantum
Monte Carlo developments [16–18], the recent calculations in correlated ba-
sis functions [19], and the progress using the so-called chiral forces based on
effective field theories [15,20].

Unfortunately, whatever realistic two-nucleon force (2NF) is used in a
microscopic nuclear many-body calculation, the saturation properties of nu-
clear matter fail to be reproduced. Saturation densities are too large and
saturation energies too attractive. Three-nucleon forces (3NF) are then ex-
pected to take care of this limitation. Three-body forces are also necessary in
light nuclei, whose binding energies are not reproduced when computed with
2NF only. In the few-body case, however, the theory based on 2NF only, un-
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derbinds experimental data, whereas nuclear matter is generally overbound.
Consequently, 3NFs are expected to provide further attraction in light sys-
tems (or small densities) and repulsion for the infinite system (at higher
densities) [21]. In the calculations reported in this paper, we employ the
Argonne V18 (Av18) 2N potential [22] supplemented with the Urbana IX
three-body force [23] which for the use in the BHF calculations was reduced
to a two-body density-dependent force by averaging over the third nucleon
in the medium [24].

The NN interactions produce NN correlations in the nuclear wave func-
tion which strongly departs from the mean-field wave function. For a uniform
system, the mean-field wave function is described by a Slater determinant
built with plane waves which occupy all the momenta up to the Fermi level,
i.e., the free Fermi sea (FFS). To learn on the nature of the NN correlations,
one can study their effects on several quantities. A first quantity affected
by the NN correlations is the energy itself. A first qualitative measurement
of the importance of the NN correlations is provided by the difference be-
tween the BHF and the HF energies. The latter is simply calculated as the
expectation value of the Hamiltonian on the FFS (EHF). NN correlations
also affect the momentum distribution, which in the HF approach is a step
function, Θ(kF − k). The NN correlations modify n(k), by depleting the
occupation below kF and populating momenta above kF. Therefore, the dif-
ference between n(k) for the correlated system and the step function provides
another measure of NN correlations [25–27]. In principle, the standard BHF
approximation for the energy does not give access to n(k). However, one
can always have an estimate of the modification of n(k) by comparing the
kinetic energies associated to the respective momentum distributions. An-
other indicator, closely related to the previous one, is the difference of the
expectation values of the interaction in the FFS and the correlated system.

On the other hand, to learn on the dependence of the NN correlations on
the isospin and spin degrees of freedom, we study the spin–isospin channel
decomposition of the expectation value of the interaction energy, and their
contribution to the symmetry energy of nuclear matter which is defined
as the difference between the energy per particle of neutron matter and
symmetric nuclear matter [28]. Finally, we get a further insight into the
spin dependence by considering the spin symmetry energy of neutron matter
defined as the difference between the energy per particle of polarized and
non-polarized neutron matter [30].
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2. Kinetic and potential energies in the BHF approach

In the BHF approach, the ground-state energy is evaluated in terms of
the so-called hole-line expansion, where the diagrams are grouped accord-
ing to the number of hole lines. The expansion is derived in terms of the
in-medium two-body scattering G-matrix. The G-matrix sums an infinite
set of diagrams of the perturbative expansion, and takes into account the
effect of the Pauli operator as well as the in-medium potential felt by the
nucleons in the intermediate states. The G-matrix shows a regular behavior
even for strong short-range repulsions, present in most of the realistic inter-
actions and represents the effective interaction between two nucleons in the
presence of the nuclear medium. In the BHF approach, the energy is given
by the sum of the kinetic energy of the free Fermi sea and the sum of two-
hole-line diagrams including the effect of two-body correlations through the
G-matrix [2–4]. In principle, the contribution from three-hole-line diagrams
(which account for the effect of three-body correlations) is minimized when
the so-called continuous prescription for the in-medium potential is used [31].
We adopt this prescription in all the calculations reported in this paper.

The BHF approximation gives the correction to the energy of the FFS,
but does not give direct access to the separate contributions of the kinetic
and potential energies. However, one can use the Hellmann–Feynman the-
orem to estimate the ground state expectation values of both contributions
from the derivative of the total energy with respect to a properly introduced
parameter. Writing the nuclear Hamiltonian as H = T + V , and defining
a λ-dependent Hamiltonian H(λ) = T + λV , the expectation value of the
potential energy in the ground state can be obtained as

〈V 〉 =
〈Ψgs | V | Ψgs〉
〈Ψgs | Ψgs〉

=

(
dE(λ)

dλ

)
λ=1

, (1)

where E(λ) is the energy of the ground-state corresponding to H(λ). It
has been shown that, when one evaluates E(λ) in the BHF approximation,
Eq. (1) provides a good estimate of the potential energy [32,33]. The kinetic
energy 〈Ψgs | T | Ψgs〉 can then be obtained by subtracting 〈Ψgs | V | Ψgs〉
from the total energy.

The Hellmann–Feynman theorem also permits to analyze the different
terms of the nuclear force by evaluating their explicit contributions. In fact,
the Av18 potential has 18 components of the form of vp(rij)O

p
ij with

Op=1,18
ij = 1, ~τi · ~τj , ~σ1 · σj , (~σi · ~σj)(~τi · ~τj), Sij , Sij(~τi · ~τj) ,

~L · ~S, ~L · ~S(~τi · ~τj), L2, L2(~τi · ~τj), L2(~σ1 · σj) ,

L2(~σ1 · σj)(~τi · ~τj),
(
~L · ~S

)2
,

(
~L · ~S

)2
(~τi · ~τj), Tij ,

(~σ1 · σj)Tij , SijTij , (τzi + τzj ) , (2)
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where Sij is the usual tensor operator, ~L the relative orbital angular mo-
mentum, ~S the total spin of the nucleon pair, and Tij = 3τziτzj − τiτj the
isotensor operator defined analogously to Sij . Note that the last four oper-
ators break the charge independence of the nuclear interaction. As we have
mentioned above, the Urbana IX three-body force is reduced to an effective
density-dependent two-body interaction when used in the BHF approach.
This force is built with three components of the type up(rij , ρ)Opij , where

Op=1,3
ij = 1 , (~σi · ~σj) (~τi · ~τj) , Sij (~τi · ~τj) (3)

introducing additional central, στ , and tensor terms [24].

3. Symmetric nuclear matter and neutron matter

We start our discussion by comparing the HF and the BHF energies,
reported in Table I, at ρ = 0.187 fm−3 which is the saturation density in
our calculation, including three-body forces. For SNM, 〈E〉HF is repulsive
and one needs the NN correlations provided by the G-matrix to obtain the
attractive 〈E〉BHF. Notice that the difference between EBHF and EHF is
smaller for neutron matter than for nuclear matter. Besides, the kinetic en-
ergy is larger in the correlated system than in the underlying FFS, indicating
a modification of n(k) with respect to the FFS. Again, this difference is larger
for symmetric nuclear matter than for neutron matter. The same is true for
the difference between 〈V 〉HF and 〈V 〉 in the interacting systems. These re-
sults point to the fact that neutron matter is less correlated than symmetric
nuclear matter. The absence of certain isospin channels and partial waves,
due to the Pauli exclusion principle, provides a simple explanation for this
behavior. Looking at the symmetry energy, the HF estimation provides
8.836 MeV in front of 34.3 MeV in the BHF approach. However, the bal-
ance of kinetic and interaction energy of the symmetry energy is completely
different. In fact, due to the larger increase in kinetic energy in symmet-
ric nuclear matter when correlations are taken into account, with respect
to the neutron matter, it turns out that the kinetic energy contribution is
rather small, or even negative at this density. Most of these differences are
explained by looking at the contribution of the tensor–isospin component of
the Av18 potential. In fact, 〈Sij(~τi · ~τj)〉HF = 0, both for SNM and NM,
while 〈Sij(~τi · ~τj)〉 = −37.59 MeV in SNM and 〈Sij(~τi · ~τj)〉 = −4.98 MeV in
NM [28, 29]. Table II shows the spin (S)- and isospin (T )-channel decom-
position of the interaction energy, in the HF and taking correlations into
account. For neutron matter, the channels with T = 0 are not active. The
main contribution to the interaction energy is provided by the spin channel
S = 1, where the tensor is active. It is precisely the channel (S = 1, T = 0),
the one that gives by large the most important contribution to the symmetry
energy.
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TABLE I

Kinetic, 〈T 〉, and potential, 〈V 〉, energy contributions to the total energy per par-
ticle of symmetric nuclear (SNM) and neutron matter (NM) at ρ = 0.187 fm−3.
Results in the HF approximation are also shown. Units are given in MeV.

ESNM ENM Esym

〈E〉HF 46.108 54.944 8.836
〈E〉BHF −15.230 19.070 34.300
〈T 〉FS 24.529 38.911 14.382
〈V 〉HF 21.578 16.033 −5.545
〈T 〉 54.294 53.321 −0.973
〈V 〉 −69.524 −34.251 35.273

TABLE II

Spin (S)- and isospin (T )-channel decomposition of the potential energy contribu-
tions to the energy of nuclear and neutron matter at ρ = 0.187 fm−3. The results
in the HF approximation are also shown. Units are given in MeV.

(S, T ) V HF
SNM VSNM V HF

NM VNM EHF
sym Esym

(0,0) 6.205 5.600 0 0 −6.205 −5.600
(0,1) 0.076 −23.064 3.428 −29.889 3.352 −6.825
(1,0) 8.873 −49.836 0 0 −8.873 49.836
(1,1) 6.424 −2.224 12.605 −4.362 6.181 −2.138

4. Neutron matter and polarized neutron matter

In Table III, we show the HF and BHF results at ρ = 0.16 fm−3 for non-
polarized and totally polarized neutron matter. The differences between
the HF and BHF results are larger in NM than in PNM, indicating that the
effects ofNN correlations are smaller in PNM.We also report the interaction
energy in the HF (〈V 〉HF) and taking into account the NN correlations
(〈V 〉), both for NM and PNM. The differences between these two results are
larger for NM than for PNM. Finally, the difference of the kinetic energies of
the correlated systems with respect to the corresponding FFS are larger for
NM than for PNM, showing that the modification of n(k) and, therefore, the
role of NN correlations is larger for NM than for PNM. The spin symmetry
energy, and its decomposition in kinetic and interaction energies, is also
reported in the table. To get a further insight into the role of the interaction
energy and its spin dependence, we report in Table IV the spin-channel
decomposition of the interaction energy and their contributions to the spin
symmetry energy. The main contribution is that of the spin S = 0 channel,
absent in PNM. On the other hand, the contribution of the S = 1 channel
is very similar in both NM and PNM.
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TABLE III

Kinetic, 〈T 〉, and potential, 〈V 〉, contributions to the total energy per particle of
neutron matter and totally polarized neutron matter at ρ = 0.16 fm−3. Also shown
are the results in the HF approximation and the kinetic energy of the underlying
free Fermi sea (〈T 〉FS). Results are given in MeV.

ENM EPNM Ssym

〈E〉HF 45.938 73.740 27.802
〈E〉BHF 16.777 59.668 42.891
〈T 〉FS 35.069 55.669 20.600
〈V 〉HF 10.869 18.071 7.202
〈T 〉 47.827 64.452 16.625
〈V 〉 −31.050 −4.784 26.226

TABLE IV

Spin-channel decomposition of the potential energy of neutron matter and spin-
polarized neutron matter at ρ = 0.16 fm−3. The HF results are also shown. Their
contributions to the spin-symmetry energy is reported in the last two columns. All
results are given in MeV.

V HF
NM VNM V HF

PNM VPNM SHF
sym Ssym

S = 0 1.297 −26.875 0 0 −1.297 26.875
S = 1 9.572 −4.784 18.071 −4.175 8.499 −0.609

At this density, ENM is smaller than EPNM indicating that the system
prefers to be non-polarized. Actually, this is true for all densities, and no
indication of a ferromagnetic transition has been detected [30].

Finally, we can conclude that at a given density, SNM is more correlated
than NM which, in turn, is more correlated than PNM. The Pauli exclusion
principle appears as the responsible for this behavior. The difference in
kinetic energies of these systems and the corresponding kinetic energy of the
underlying FFS, corroborates these rather intuitive statements.
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