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The fission-fragment mass distribution is evaluated in a quantum me-
chanical framework using mass asymmetry, neck and elongation as the rele-
vant collective degrees of freedom. The potential energy surfaces (PES) are
calculated within the macroscopic–microscopic model based on the Lublin–
Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential
and a monopole pairing force. The PES is presented and analysed in de-
tail for the isotope 236Pu, which reveals a deep asymmetric valley. The
fission-fragment mass distribution is obtained from the eigenstates of a col-
lective Hamiltonian computed within the Born–Oppenheimer approxima-
tion (BOA), applying the WKB approximation and introducing a neck-
dependent fission probability. For spontaneous fission of 236Pu, the calcu-
lated mass distribution is found in a good agreement with the data.
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1. Introduction

Using the recently developed Fourier parametrisation of deformed nu-
clear shapes [1], shown to be very rapidly converging, we have made a first
attempt to obtain the fission-fragment mass distribution of even–even plu-
tonium isotopes with mass numbers 236 ≤ A ≤ 246. Three collective co-
ordinates corresponding to elongation (q2), left–right asymmetry (q3) and
neck-size (q4) were considered in our analysis. A non-axial degree of freedom
(see [1]) was not included in the present investigation since we are dealing
here with very elongated systems. The potential energy surfaces of dif-
ferent fissioning nuclei were calculated within the macroscopic–microscopic
method [2]. The fragment mass distribution obtained in low-energy fission of
light actinides was evaluated in a quantum mechanics framework within the
Born–Oppenheimer approximation [3]. The fission yield was obtained from
the probability distribution of the collective wave function on the (q3, q4)
plane in the vicinity of the scission configuration (q2 ≈ 2). A neck-size-
dependent fission probability [4] was used to evaluate the mass yields from
the distribution probability at different elongations of the fissioning nucleus.
Due to the limited length of the present contribution, we present below only
the results for the lightest isotope, 236Pu.

2. Model

The axial symmetric shape-profile function of a fissioning nucleus written
in cylindrical coordinates (ρ, z) is expanded in a Fourier series [1]
ρ2(u)

R2
0

= a2 cos(u)+a3 sin(2u)+a4 cos(3u)+a5 sin(4u)+a6(5u)+. . . , (2.1)

where R0 is the radius of spherical nucleus and u = π/2(z − zsh)/z0 with
−z0 + zsh ≤ z ≤ z0 + zsh. The volume conservation condition gives z0 =
R0π/(a2 − a4/3 + a6/5 − . . .)/3. The shift coordinate zsh ensures that the
centre of mass is located at the origin of the coordinate system.

It was shown in Ref. [1] that the liquid drop (LD) path to fission proceeds
towards decreasing values of a2 and growing negative values of a4. It is,
therefore, convenient to introduce new, physically more intuitive, collective
coordinates which ensure an optimal presentation of the potential energy
landscape

q2 = a
(0)
2

/
a2 − a2

/
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√
(q2/9)2 +

(
a
(0)
4

)2
,

q5 = a5 − a3(q2 − 2)/10 , q6 = a6 −
√

(q2/100)2 +
(
a
(0)
6

)2
, (2.2)

where a(0)2 = 1.03205, a(0)4 = −0.03822, and a(0)6 = 0.00826 are the expansion
coefficients of a sphere.
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The bottom of the LD fission valley corresponds roughly to q4 = q6 = 0,
and the definition of q5 and q6 ensures the smallest stiffness of the LD energy
towards q3 and q4, respectively, when q5 = q6 = 0.

In these coordinates, the collective Hamiltonian has the following form:

Ĥcoll = −~2

2

∑
i,j

|M |−1/2 ∂

∂qi
|M |−1/2M−1ij ({qi})

∂

∂qj
+ V ({qi}) , (2.3)

where Mij({qi}) and V ({qi}) denote the inertia tensor and the potential
energy, respectively, and |M | = det(Mij).

The eigenproblem of this Hamiltonian can be solved in the BOA in which
one assumes that the motion towards fission is much slower than the one in
the two other collective coordinates. This implies that the eigenfunction of
Ĥcoll can be approximated by the following product:

ΨnE(q2, q3, q4) = unE(q2) ϕn(q3, q4; q2) . (2.4)

Here, unE(q2) is the wave function for the fission mode and ϕn are the
eigenfunctions of the Hamiltonian which describe the collective motion per-
pendicular to the fission mode. In the following, we shall take the WKB
approximation for the unE(q2) wave function and consider only the low-
est energy eigenstate ϕn=0 since we are interested in fission at a very low
excitation energy, and we are going to compare the calculation with exper-
imental measurements involving spontaneous fission. The effect of taking
into account higher states was discussed in Ref. [3].

The probability of finding a system, for a given q2 value, in a defined
(q3, q4) point is equal to

W (q3, q4; q2) = |Ψ(q3, q4; q2)|2 = |ϕ0(q3, q4; q2)|2 . (2.5)

Our model is still simplified further and instead of the square of the collective
wave function (2.5), we take the following Wigner function:

W (q3, q4; q2) ∼ exp

{
−V (q3, q4; q2)− Veq(q2)

E0

}
, (2.6)

where Veq(q2) is the potential minimum for a given elongation q2 and E0 is
the zero-point energy treated here as a free parameter.

The probability distribution integrated over q4

w(q3; q2) =

∫
W (q3, q4; q2) dq4 (2.7)

is directly related to the fragment mass yield at given elongation q2.
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It is obvious that the fission probability should depend on the neck ra-
dius. Following Ref. [4], we assume the neck-rupture probability P in the
form of

P (q3, q4, q2) =
k0
k
Pneck(κ) , (2.8)

where k is the momentum in the direction towards fission (or simply the
velocity along q2), while κ = κ(q3, q4, q2) is the deformation-dependent neck
radius (in R0 units). k0 plays a role of a scaling parameter. The neck-rupture
probability is taken in the form of a Fermi function [4]

Pneck(κ) =

(
1 + exp

(
κ− κ0
d

))−1
. (2.9)

The parameter κ0 = 0.16 is equal to the nucleon size in R0 units and d = 0.01
is fixed by comparing the theoretical fission-fragment mass distribution of
236Pu with the experimental data [8]. The momentum k in Eq. (2.8) has
to ensure that the probability depends on the time in which one crosses the
subsequent interval in q2: ∆t = ∆q2/v(q2), where

v(q2) = ~k/M̄(q2) (2.10)

is the velocity towards fission. The inertia M(q2) is evaluated using the
approximation proposed in Ref. [6]

M̄(q2) = µ [1 + 11.5 (Birr − 1)]

(
∂R12

∂q2

)2

, (2.11)

where Birr is the irrotational inertia corresponding to the distance between
the fragments R12 and µ is the reduced mass. The value of k in Eq. (2.10)
depends on the difference E−V (q2) and on the part of the collective energy
which is converted into heat Q

~2k2

2M̄(q2)
= Ekin = E −Q− V (q2) . (2.12)

Here, we assume that Q = 0, i.e. we neglect the nuclear dissipation what is
a reasonable approximation in low energy fission.

The fission probability (2.7) will be given by the integral

w(q3, q2) =

∫
W (q3, q4; q2)P (q3, q4, q2) dq4 . (2.13)

Such an approach means that the fission process will be spread over some
region of q2 and that for a given q2, at fixed mass asymmetry, one has to



Fragment Mass Distributions in Low-energy Fission of 236Pu 187

take into account the probability to fission at a previous q2 value, i.e. one
has to replace w(q3, q2) by

w′(q3, q2) = w(q3, q2)

1−
∫

q′2≤q2

w
(
q3, q

′
2

)
dq′2

/∫
w
(
q3, q

′
2

)
dq′2

 . (2.14)

The integral mass yield will be the sum of all partial yields at different q2

Y (q3) =

∫
w′ (q3, q2) dq2

/∫
w′(q3, q2) dq2 dq3 . (2.15)

As it is seen from (2.15), the scaling factor k0 in the expression for P ,
Eq. (2.8), has vanished and does not appear any more in the definition of
the mass yield. Our model will thus have only two adjustable parameters,
κ0 and d, that appear in the neck-rupture probability (2.9).

3. Results

The potential energy surfaces were calculated within the macroscopic–
microscopic model using the Lublin–Strasbourg Drop [5] for the macroscopic
part, while the microscopic part was evaluated as the sum of the Strutin-
sky shell and the BCS pairing correction obtained using the single-particle
energies of the Yukawa-folded Hamiltonian [7].

The deformation energy landscape on the (q2, q3) plane is shown for
236Pu in Fig. 1. Each point on the PES was minimized with respect to q4.
At large elongations q2, a pronounced valley corresponding to asymmetric
fission (q3 6= 0) and a shorter one for the symmetric splitting (q3 = 0) are
visible. The cross section of this map at elongation q2 = 2.05 is presented
in Fig. 2 on the plane (Af , q4), where Af is the mass-number of the heavier

Fig. 1. Potential energy surface of 236Pu on the (q2, q3) plane.
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fragment. One identifies two minima: one deeper asymmetric around Af =
140 and the other one corresponding to the symmetric fission. Our estimate
(Eq. (2.15)) of the fission fragment mass distribution is compared in Fig. 3
with the experimental yield taken from Ref. [8].

Fig. 2. Potential energy surface of 236Pu on the (Af , q4) plane at elongation q2 =

2.05. The black thick/violet line corresponds to the neck radius rnk = 2 fm, while
the gray thin/green one to rnk = 1 fm.
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Fig. 3. Experimental fission fragment mass yield for the spontaneous fission of
236Pu [8] compared with our estimate (2.6) for E0 = 2 MeV.

4. Summary

We have shown that the three-dimensional quantum mechanical model
which couples the fission, neck and mass asymmetry modes is able to re-
produce the main features of the fragment mass distribution when a neck-
dependent fission probability is taken into account. Preliminary results for
the plutonium isotopes also show that our model gives the fission fragment
mass yields close to the data. Further calculations are in progress.
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