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The problem of quantum transmission through potential barriers and
wells is studied for a composite system consisting of a few identical parti-
cles coupled by pair oscillator potentials in the new symmetrised-coordinate
representation. A closed-channel method for solving the relevant boundary
value problem is applied. We confirm the efficiency of the proposed ap-
proach by calculating the complex energy values of metastable states and
analysing the shape and Feshbach resonances in systems of identical par-
ticles on a line, which give rise to quantum transparency of the repulsive
barriers and the resonance reflection from the wells.
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1. Introduction

For a decade, the mechanism of quantum penetration of two bound parti-
cles through barriers and wells has attracted attention from both theoretical
and experimental viewpoints in relation with such problems as near-surface
quantum diffusion of molecules, fragmentation in producing neutron-rich
light nuclei, heavy-ion collisions through multidimensional barriers, and the
mechanism of ternary fission [1–4]. The generalisation of the two-particle
model over quantum systems of n identical particles, considered in our ear-
lier papers [5–7], is of great importance for the appropriate description of
the above problems.
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In this paper, we apply the approach proposed by us earlier [5–7] to
the calculations of complex energy values of metastable states, and to the
analysis of the shape and Feshbach resonances of composite systems of a
few identical particles on a line, giving rise to quantum transparency of the
repulsive barriers and resonance reflection from the wells.

2. Statement of the problem

We consider the penetration of a cluster of n identical quantum particles,
coupled by short-range oscillator-like interaction, through a potential barrier
or well in the s-wave approximation, corresponding to one-dimensional Eu-
clidian space. We assume that the spin part of the wave function is known,
so that only the spatial part of the wave function is to be considered. This
function may be symmetric or antisymmetric with respect to a permutation
of n identical particles. The relevant Schrödinger equation in the oscillator
units has the form of− ∂2

∂x2
+

n∑
i,j=1;i<j

(xij)
2

n
+

n∑
i=1

V (xi)− E

Ψ(x) = 0 . (1)

Our goal is to find the solutions Ψ(x) of Eq. (1), totally symmetric (or
antisymmetric) with respect to the permutations of n particles that belong
to the permutation group Sn. The permutation of particles is nothing but
a permutation of their Cartesian coordinates xi ↔ xj , i, j = 1, . . . , n.

The above goal is achieved using the appropriately chosen new sym-
metrized coordinates rather than the conventional Jacobi ones [5–7],
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n
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t=1

xt

)
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1√
n

(
x1+

n∑
t=2

a0xt+
√
nxs+1

)
, s = 1, . . . , n−1 ,

x1 =
1√
n

(
n−1∑
t=0

ξt

)
, xs =

1√
n

(
ξ0+
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t=1

a0ξt+
√
nξs−1

)
, s = 2, . . . , n ,

where a0 = 1/(1−
√
n ) < 0. The introduction of the symmetrized coordi-

nates provides the invariance of the Hamiltonian with respect to permuta-
tions of n identical particles. In the symmetrized coordinates, Eq. (1) takes
the form of[
− ∂2

∂ξ20
+

n−1∑
i=1

[
− ∂2

∂ξ2i
+ ξ2i

]
+

n∑
i=1

V (xi(ξ0, ξ))− E

]
Ψ(ξ0, ξ;E) = 0 . (2)

This equation is invariant under the permutations ξi ↔ ξj for i, j = 1, . . . ,
n − 1, i.e., the invariance of Eq. (1) under the permutations xi ↔ xj ,
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i, j = 1, . . . , n is conserved, which significantly simplifies the construction
of states, symmetric (or antisymmetric) with respect to the permutation of
n particles [7,8], as compared to the Jacobi coordinates in the centre-of-mass
reference frame [9]. However, the invariance of Eq. (2) under the permuta-
tions ξi ↔ ξj does not yield the invariance of Eq. (1) with respect to the
permutations xi ↔ xj , which is the essence of the problem of constructing
translation-invariant models of light nuclei [9, 10].

To solve such a problem, the orthonormalised harmonic oscillator func-
tions ΦS(A)

j (ξ), symmetric (S) (or antisymmetric (A)) under the permuta-

tions of n identical particles, and the corresponding eigenvalues εS(A)
i were

calculated using the two-step algorithm [7]. The solution of problem (2)
in the symmetrised coordinates is sought in the form of expansion over the
harmonic oscillator basis functions [5]

Ψ
S(A)
io

(ξ0, ξ) =

jmax∑
j=1

Φ
S(A)
j (ξ)χ

S(A)
jio

(ξ0) . (3)

Thus, we arrive at the scattering problem for the set of coupled ordinary dif-
ferential equations for the functions depending on the center-of-mass variable
in the oscillator symmetrized-coordinate representation

jmax∑
j=1

[(
− d2

dξ20
−
(
E − εS(A)

i

))
δij + V

S(A)
ij (ξ0)

]
χ
S(A)
jio

(ξ0) = 0 , (4)

where V
S(A)
ij (ξ0) = V

S(A)
ji (ξ0) are the elements of the symmetric matrix

V S(A)(ξ0) of effective potentials (see, for details, [5, 7]).

3. The analysis of shape and Feshbach resonances

The analysis of shape and Feshbach resonances is given for the transmis-
sion of two, three or four identical particles (n = 2, 3, 4) coupled by the har-
monic oscillator potential V (xt−xt′) = (xt−xt′)2, t′, t = 1, . . . , n above the
Gaussian barrier (α > 0) or well (α < 0): V (xt) = α/(

√
2πσ) exp(−x2t /σ2).

The case of sub-barrier penetration was considered in [5–7]. Here, we
consider the case of transmission above the barrier or well (i.e. for E > 2α).
The probability of a transition from the ground state i = 1 to any of No

eigenstates io = 1, . . . , No of the open channels E > ε
S(A)
io

of the BVP for
Eqs. (4) and the complex eigenvalues of metastable states are calculated
using the program KANTBP [11]. The dependence of the probability upon
the energy is non-monotonic, and the observed shape resonance peaks are
manifestations of the quantum transparency effect (see Fig. 1).
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Fig. 1. The total probabilities versus the energy E (in oscillator units) for the
transmission of a cluster of n = 2, 3, 4 particles, coupled by the oscillator potential
and being in the ground state, through (or above) the Gaussian potential barriers.

Figure 2 presents the total transmission probability |T |211 versus the
energy E (in oscillator units) for systems of the n = 2, 3, 4 particles, coupled
by the oscillator potential, propagating above the Gaussian well with σ = 0.1
and α = −2. One can see that the resonance structure becomes enriched
with increasing the number of transmitted particles. So, in the case of n = 2,
we see double-resonance structures, similar to the double-well case. In the
case of n = 3 and 4, the double structure can appear with increasing the
depth of wells |α|.

Fig. 2. The total transmission probability |T |211 versus the energy E in oscillator
units). The cluster of n=2, 3, 4 particles, coupled by the oscillator potential, pro-
pagates above the Gaussian well with σ=0.1 and α=−2. The system is initially in
the ground state. The vertical lines in the pictures denote the threshold energies.

Figures 3 and 4 present the profiles of probability density |Ψ(ξ0, ξ1)|2
for the symmetric states of two particles transmitted above the Gaussian
barrier and well α = ±2, σ = 1/10, revealing the resonance transmission
and total reflection at resonance energies. One can see that the series of
resonances in the transmission |T |211 from the ground state 1 are induced
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by Feshbach metastable states from the second and fifth closed channels,
respectively, from left to right panels. In contrast to the case of barrier, in
the vicinity of the well resonance, we see both the resonance reflection and
the transmission (see two middle panels in Fig. 4).

Fig. 3. The enhancement of probability densities of the coefficient functions
|χi(ξ0)|2 and the profiles of probability densities |Ψ(ξ0, ξ1)|2 for symmetric states
of two particles transmitted above the Gaussian barrier α = 2, σ = 1/10, re-
vealing the resonance reflection at the resonance energies (EM

1 = 9.614 − ı0.217,
EM

2 = 13.505− ı0.144, . . . ).

Fig. 4. The enhancement of probability densities of the coefficient functions
|χi(ξ0)|2 and the profiles of probability densities |Ψ(ξ0, ξ1)|2 for symmetric states
of two particles transmitted above the Gaussian well α = −2, σ = 1/10, reveal-
ing the resonance reflection at the resonance energies (EM

1 = 4.4348 − ı0.2572,
EM

2 = 4.6764−ı0.0058, . . . ).
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4. Conclusion

We formulated a model of n identical particles bound by the oscillator-
type potential under the influence of the external field of a target (barrier or
well) in the new symmetrized coordinates that was reduced to the scattering
problem for the set coupled-channel equations using harmonic oscillator basis
symmetric w.r.t. permutations of the particles. We proved that the effects of
resonance transmission and reflections are due to the existence of metastable
states with complex energy, embedded in the continuum, corresponding to
shape and Feshbach resonances.

The proposed approach can be adapted and applied to the analysis of
quantum transparency or total reflection effects, to the study of quantum dif-
fusion of molecules, micro-clusters through surfaces, and the fragmentation
mechanism in producing very neutron-rich light nuclei, heavy-ion collisions
and the mechanism of ternary fission [1–4] as well as microscopic study of
tetrahedral-symmetric nuclei.
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