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The recent progresses of the two-dimensional collective Hamiltonian
and its applications for chiral and wobbling modes are reviewed. In par-
ticular, the comparisons between the results by one- and two-dimensional
collective Hamiltonian are introduced.
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1. Introduction

Triaxial shape has been a long-standing subject in nuclear physics. The
observation of chiral doublet or wobbling bands provides unambiguous ex-
perimental evidence of stable triaxiality. Nuclear chirality was first predicted
in 1997 by Frauendorf and Meng [1]. Experimentally, more than 30 candi-
date chiral nuclei have been reported in the A ∼ 80, 100, 130, and 190 mass
regions; see, e.g., Refs. [2,3]. The wobbling motion was originally suggested
by Bohr and Mottelson [4], and has been found mainly in the A ∼ 160 mass
region; see, e.g., Ref. [5] and, very recently, in the A ∼ 130 region [6].

Many theoretical models have been used to investigate the chirality and
wobbling motion, such as the triaxial particle rotor model (PRM) [7–14], the
tilted axis cranking (TAC) model [15,16], and the random phase approxima-
tion (RPA) [17–20]. Based on the TAC model a one-dimensional collective
Hamiltonian (1DCH) was proposed [5,21]. It goes beyond the mean-field ap-
proximation and could microscopically describe not only the yrast sequence
but also the highly excited bands. Using this model, the chiral vibration
and rotational modes have been successfully described [21]. The simple,
longitudinal and transverse wobblers [22] are systematically studied, and
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the variation trends of wobbling frequency of these three types of wobblers
are confirmed [5]. This model is also adopted to describe the wobbling bands
in 135Pr [23]. Some of results were presented at the XXII Nuclear Physics
Workshop “Marie and Pierre Curie” [24]. With the successes of 1DCH, we
recently extend the collective Hamiltonian to two dimensions (2DCH) to
explore the related new physics [25].

In this proceeding, the recent progresses of 2DCH and its comparison
with 1DCH will be briefly reviewed.

2. Theoretical framework

Collective Hamiltonian, in terms of collective degree of freedom, is an ef-
fective tool for investigating various collective processes which involve small
velocities [4]. In the chiral and wobbling modes collective Hamiltonian, the
orientation of the nucleus in the rotating mean field is taken as the collec-
tive degree of freedom. The detailed theoretical framework of the collective
Hamiltonian is presented in Refs. [5, 21, 23,25].

In the 1DCH, the azimuth angle ϕ of nuclear orientation is taken as the
collective coordinate. In the 2DCH, not only the ϕ but also the polar angle θ
are considered as the collective variables. The quantized form of the 2DCH
is written as

Ĥ(θ, ϕ) = − ~2
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in which the collective potential V and mass parameters Bθθ, Bθϕ, Bϕθ, and
Bϕϕ are all functions of (θ, ϕ) and calculated by the TAC model. The w is
the determinant of the mass parameter tensor

w = detB =

∣∣∣∣ Bθθ Bθϕ
Bϕθ Bϕϕ

∣∣∣∣ = BθθBϕϕ −BθϕBϕθ . (2)

Solving the collective Hamiltonian (1), the collective levels and the corre-
sponding wave functions can be obtained.

3. Results and discussion

In the calculations, a system with one h11/2 proton particle and one
h11/2 neutron hole coupled to a triaxial rigid rotor with γ = −30◦ is consid-
ered. The moment of inertia is chosen as J0 = 40 ~2/MeV. The collective
Hamiltonian is constructed by Eq. (1) with the collective potential and the
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mass parameter obtained from TAC calculations. The diagonalization of
the collective Hamiltonian yields the energy levels and wave functions for
each cranking frequency [25]. In the following, taking ~ω = 0.50 MeV as an
example, the collective energy levels and the wave functions obtained by the
2DCH will be compared with those obtained by the 1DCH [21].

The comparisons for the collective energy levels are shown in Fig. 1.
Since the 2DCH is invariant with the transformations ϕ → −ϕ (P̂ϕ) and
θ → π − θ (P̂θ), one could group the eigenenergies and eigenstates into four
categories with different combinations of the symmetries Pθ and Pϕ, i.e.,
(PθPϕ) = (++), (+−), (−+), and (−−). For the 1DCH, it is invariant with
respect to ϕ→ −ϕ and thus, its solutions can be grouped as (Pϕ) = (+) and
(−). In Fig. 1, the collective energy levels of the two- and one-dimensional
collective Hamiltonians are normalized to the corresponding lowest energy
levels (++) and (+), respectively.
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Fig. 1. (Color online) Collective energy levels obtained from the two-dimensional
collective Hamiltonian in comparison with those from the one-dimensional collective
Hamiltonian for ~ω = 0.50 MeV. Taken from Ref. [25].

Apparently, one obtains more energy levels by solving the 2DCH than
solving the 1DCH, since one more degree of freedom θ has been taken into
account. Of course, one cannot find the corresponding energy levels in the
groups of (−+) and (−−) in the 1DCH results. Only the 2DCH energy
levels in the groups of (++) and (+−) with zero-phonon excitation along the
θ direction have their counterparts in the 1DCH. By analyzing the behaviors
of the wave functions, one can easily build the connections between the
solutions of the one- and two-dimensional Hamiltonians, as shown in Fig. 1
with the dotted lines.

The comparison of the wave functions can be found in Fig. 2. In order
to compare 2DCH wave functions with the 1DCH ones, we chose θ = 78◦ for
all the wave functions, and this θ value is also the position of the minimum
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Fig. 2. (Color online) Left: The wave functions along the ϕ direction obtained by
the 2DCH in comparison with those by the 1DCH. Right: The probability distri-
butions P (θ) along the θ direction obtained by the 2DCH. Taken from Ref. [25].

in the collective potential. In Fig. 2, we present the wave functions of the
six lowest energy states in the (++) group of the 2DCH, as well as the
corresponding wave functions in the 1DCH. In Fig. 3, we also show the wave
functions along the ϕ direction obtained by the 2DCH for θ = 0◦. It can be
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Fig. 3. (Color online) The wave functions along the ϕ direction obtained by the
2DCH for θ = 0◦.
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seen from Fig. 3 that the wave functions almost vanish, which is consistent
with the fact that the minimum of the collective potential is far from θ = 0◦.
So in the following, the discussions are focused on the case for θ = 78◦.

It can be seen from Fig. 2 that the behaviors of the wave functions for
the 2DCH levels 1, 3, and 6 are similar to those for the one-dimensional
levels 1, 2, and 3, respectively. This is consistent with the fact that the zero
phonon excitation modes along the θ direction are weakly coupled with the
excitations along the ϕ direction.

However, in Fig. 2, no one-dimensional counterpart has been found for
the two-dimensional levels 2, 4, and 5. To further examine this point, we also
plot the probability distributions of the 2DCH along the θ direction as shown
in Fig. 2. Apparently, for each 2DCH level which has a one-dimensional cor-
respondence, i.e., 1, 3, 6, the corresponding probability distribution along
the θ direction has only one peak, and this is associated with a zero-phonon
vibration mode along the θ direction. In contrast, the probability distri-
butions of the other levels have more than one peak, and they correspond
to nonzero-phonon vibration mode along the θ direction. As a result, they
have no counterpart in the solutions of the 1DCH. Note that we have also
checked the wave functions for other rotational frequencies, and a similar
conclusion can be obtained. To avoid repetition, the results are not shown
here.

In Fig. 1, we label the counterparts between the 2DCH levels and the
1DCH ones with dotted lines. One can see that, with increasing energy, the
energy differences between the 2DCH and 1DCH solutions become larger.
This indicates that the one-dimensional approximation is reasonable at low
excitation energy.

In addition, in Ref. [25], the angular momenta and energy spectra calcu-
lated by the 2DCH are compared with those by the TAC approach and the
exact solutions of PRM. It is demonstrated that the 2DCH can well repro-
duce the PRM results by taking the fluctuations along the θ and ϕ directions
into account.

4. Summary

The recent progresses of the 2DCH and its comparison with 1DCH are
reviewed. More excitation modes have been obtained in the 2DCH calcula-
tions in comparison with the 1DCH ones. The 2DCH levels, which have the
zero-phonon excitation along the θ direction, have their counterparts in the
1DCH solutions.
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In addition, it is demonstrated that the 2DCH can well reproduce the
PRM results by taking the fluctuations along the θ and ϕ directions into
account. The success of the collective Hamiltonian has open the door to
develop the collective Hamiltonian based on TAC density functional, e.g.,
the TAC covariant density functional theory (TAC-CDFT) [26].
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