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We investigate the radial-overlap part of the isospin-symmetry breaking
correction to superallowed 0+ → 0+ β decay. The 8 sd-shell emitters
with masses between A = 22 and A = 38 have been re-examined. The
Fermi matrix element is evaluated with realistic spherical single-particle
wave functions, obtained from spherical Woods–Saxon (WS) or Hartree–
Fock (HF) potentials, fine-tuned to reproduce the experimental data on
charge radii and separation energies for nuclei of interest. The elaborated
adjustment procedure removes any sensitivity of the correction to a specific
parametrisation of the WS potential or to various versions of the Skyrme
interaction. The present results are generally in a good agreement with
those already reported. At the same time, we find that the calculations with
HF wave functions result in systematically lower values of the correction.
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1. Physics of superallowed β decay

It has been pointed out that the superallowed 0+ → 0+ nuclear β decay
provides an excellent tool to probe the fundamental symmetries underlying
the Standard Model of electroweak interaction, including the Conserved Vec-
tor Current (CVC) hypothesis and the unitarity of the Cabibbo–Kobayashi–
Maskawa (CKM) quark-mixing matrix. According to the CVC hypothesis,
the corrected Ft value should relate to GV, a fundamental vector coupling
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constant for a semi-leptonic decay, and thus be constant for all emitters.
Traditionally, this relation is expressed as

Ft = ft
(
1 + δ′R

)
(1 + δNS − δC) =

K

2G2
V

(
1 +∆V

R

) , (1.1)

whereK/(~c)6=2π3 ln(2)~/(mec)
5=(8120.2716±0.012)×10−10 GeV−4 sec,

∆V
R, δ

′
R and δNS are transition-independent, transition-dependent and nu-

clear structure-dependent parts of a radiative correction [1], δC is an isospin-
symmetry breaking correction, defined as a deviation of the Fermi matrix
element squared from its model-independent value

|MF|2 =
∣∣M0

F

∣∣2 (1− δC) , (1.2)

with |M0
F| =

√
T (T + 1)− TziTzf .

The quantity ft is determined experimentally by measuring the partial
half-life, the QEC value and the Fermi branching ratio. The most recent
survey of world data [2] finds 14 of these superallowed transitions with mea-
sured ft values known to 0.1% precision or better. If the CVC holds, one
can thus extract GV. By comparing it to the vector coupling constant from
a muon decay, the CKM mixing matrix element between u and d quarks,
|Vud| can be determined, providing a precise test of the unitarity condition
of the CKM matrix.

On the theoretical side, there is still no consensus between various cal-
culations of δC (see Ref. [2] for a recent review). The present work explores
the differences between shell-model calculations supplemented by WS or HF
radial wave functions in comparison with the previous studies [1, 3].

2. Shell-model description of the isospin correction

Within the shell model, the Fermi matrix element of the β+ decay be-
tween an initial |i〉 and final |f〉 many-body states can be written as

MF = 〈f |T+|i〉 =
∑
α

∑
π

〈f |a†αn
|π〉 〈π| aαp |i〉 〈αn|t̂+|αp〉

π
, (2.1)

where α denotes a full set of spherical quantum numbers of a single-particle
state, π refers to a complete set of states of an (A − 1) nucleus compatible
with the angular momentum and parity conservation, and 〈αn|t̂+|αp〉

π is the
single-particle matrix element of the isospin operator1 between proton and
neutron radial wave functions

〈αn|t̂+|αp〉
π
= Ωπ

α =

∞∫
0

Rπαn
(r)Rπαp

(r)r2dr . (2.2)

1 We neglect the radial excitations as was pointed out by Miller and Schwenk [4].
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For harmonic oscillator functions, the latter is equal to one. To overcome this
artefact, we have to replace the harmonic oscillator radial wave functions by
realistic radial wave functions obtained from a spherically-symmetric WS
or the self-consistent HF potential. A sum over intermediate states π in
Eq. (2.1) allows us to go beyond the closure approximation and take into
account the dependence of Ωπ

α on the excitation energies of the intermediate
states, Eπ. For each Eπ, we fine-tune our potential so that the individual
energies of valence space orbitals match experimental proton or neutron
separation energies.

Substituting Eq. (2.1) into Eq. (1.2), we obtain a suitable expression
for δC, as a sum of two terms, δC ≈ δRO + δIM. The first term, δRO, is the
contribution due to the deviation from unity of the overlap integral between
the radial parts of the proton and neutron single-particle wave functions. It
is called a radial-overlap correction and can be expressed as

δRO =
2

M0
F

∑
α

∑
π

〈f ||a†αn
||π〉T 〈i||a†αp

||π〉T (1−Ωπ
α) , (2.3)

where the reduced matrix elements, 〈f ||a†αn ||π〉
T
and 〈i||a†αp ||π〉

T
are related

to the spectroscopic amplitudes [3] for neutron and proton pick-up respec-
tively. The superscript T means that these quantities are computed with an
isospin-invariant effective interaction.

The other term, δIM, is the so-called isospin-mixing correction [5, 6],
arising due to the isospin-mixing in many-body configurations of the initial
and final states. It is obtained from the shell-model diagonalisation using a
charge-dependent two-body effective interaction and is expressed as

δIM =
2

M0
F

∑
α

[
〈f |a†αn

aαp |i〉
T − 〈f |a†αn

aαp |i〉
]
. (2.4)

In this work, we focus only on the radial-overlap correction, calculating it
within the shell model in combination with the realistic radial wave functions
obtained from a WS or Skyrme–HF single-particle potential.

3. Results for δRO and discussions

The radial-overlap correction, δRO has been evaluated using the proce-
dures outlined in the previous section. For this study, we choose only sd-shell
emitters which are well-described by the so-called universal sd interactions
— USD, USDA/B [7,8]. They include 22Mg, 26Al, 26Si, 30S, 34Cl, 34Ar, 38K
and 38Ca. Six of these transitions are used to deduce the most precise Ft
value, while the decays of 26Si and 30S are expected to be measured with an
improved precision in future radioactive-beam facilities.
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The shell-model calculations have been performed in the full sd shell,
using NuShellX@MSU code [9]. To get convergence, up to 100 intermediate
states of each spin have been taken into account in Eq. (2.3).

Figure 1 shows the results for δRO obtained with either WS or HF single-
particle wave functions. The WS results have been computed using two
different parametrisations. One of them is that of Schwierz, Wiedenhöver
and Volya (SWV) [10], while the other is that of Bohr and Mottelson [11],
modified as proposed in Ref. [12] and denoted as BMm. It is important to
note that the Coulomb and the charge-symmetric isovector terms are the
only sources of the difference between proton and neutron single-particle
wave functions. In the present study, we assume that the charge-symmetry
breaking and all other deficiencies of the WS potential can be cured by read-
justment of the well depth case-by-case to reproduce experimental proton
and neutron separation energies. The length parameter of the central term
was determined from a condition that the charge density constructed from
the proton radial wave functions yields a root-mean-charge radius in agree-
ment with the experimental value measured by electron scattering [13] or by
isotope-shift estimation [1].
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Fig. 1. (Colour on-line) Calculated values for the radial overlap correction, δRO [%]
in comparison with the results of Ormand and Brown (OB) [3, 5] and those of
Towner and Hardy (TH2002) [1].

The spherical HF calculations have been performed with three different
Skyrme forces, namely, SGII [14] and SkM* [15] and SLy5 [16]. While SGII
and SkM* were already used in Ref. [3], SLy5 is a more recent parametri-
sation by the Saclay–Lyon collaboration. It was constructed to reproduce
various bulk nuclear properties and selected properties of a number of dou-
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bly magic nuclei, without 16O. Since the nuclei of interest are open-shell
systems, we have assumed a uniform occupation of a last occupied, partly
filled orbital. We have checked that shell-model occupation numbers for
initial and final 0+ states, obtained from the diagonalisation, produce very
similar results. The central part of the self-consistent potential of the parent
and daughter nuclei was scaled in order to reproduce experimental proton
and neutron separation energies, respectively. We have tested that this scal-
ing only little influences the charge radii of nuclei considered, which stay
in a very good agreement with experiment. The Coulomb exchange term
was accounted within the Slater approximation. Our preliminary results [12]
show that its exact calculation only marginally affects the δRO value.

As is seen from the figure, all our WS results are quite close to each other,
indicating that the correction δRO is not very sensitive to a particular choice
of the WS potential parameters. In general, they are in a fair agreement
with the shell-model plus WS calculation of Towner and Hardy in 2002 [1],
except for 34Ar and 38K because we used new experimental data for the
charge radius [13]. We do not compare our present results with the latest
calculation of Towner and Hardy [6], performed with the inclusion of the
orbitals outside the valence space. The work in this direction is in progress.

For the HF case, we find that the correction only little depends on a
particular version of the Skyrme force, except for 30S. Overall, our results
are consistent with those of Ormand and Brown [5], again with the exception
of 30S. In the case of 30S, the correction δRO is dominated by the 2s1/2
state, in which the centrifugal barrier is not present, and thus the radial
wave function is very sensitive to the fine details of the mean field. We note
that SLy5 interaction results in a considerably smaller δRO value compared
to SGII and SkM*.

We do not confront our results to the most recent calculation of δRO with
Skyrme–HF wave functions carried out by Hardy and Towner in 2009 [17].
Unlike the standard HF procedure, they performed a single calculation for
the nucleus with (A − 1) nucleons and (Z − 1) protons, and then used the
proton and the neutron eigenfunctions from the same calculation to compute
radial integrals. Since Koopmans’s theorem is not fully respected by such HF
calculations, in particular, with a density-dependent effective interaction, we
do not consider their protocol to be well-justifiable.

The δRO values obtained with HF wave functions are seen to be system-
atically smaller than those obtained with WS wave functions. The reason
can be easily understood. The Skyrme interaction is usually supposed to
be isospin invariant. However, the presence of the Coulomb term causes a
difference between proton and neutron densities, inducing an isovector term
in the self-consistent mean-field potential [3,18]. That term tends to counter
Coulomb repulsion, therefore reducing δRO. It will be interesting to study
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whether charge-symmetry (CSB) and charge-independence breaking (CIB)
terms in a conventional isospin-invariant Skyrme interaction affect the value
of the correction.
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