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ALPHA DECAY OF DEFORMED
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Using the decay theory of Goldberger and Watson, we analyzed the
α decay of even–even axially symmetric nuclei. The decay is regarded
as a transition, caused by any residual interaction, between the bound
state of the parent nucleus and the continuous spectrum. In addition, the
corrections to nuclear and Coulomb interactions due to deformation are also
treated as a perturbation. Basis wave functions of the continuous spectrum,
calculated in quasi-classical approximation, are shown to have inside the
nucleus the amplitude of the order of square root from the transmission
coefficient through the Coulomb barrier. General formula is derived for the
α-decay rate, which correlates with standard result in the case of transitions
between the ground states of even–even nuclei.
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1. Introduction

Alpha decay is usually described (see, e.g., [1, 2]) in the framework of
Gamov’s model [3], in which Gamov assumed that at the initial moment
t = 0 inside the nucleus, there is an α particle, described by the wave packet
with wave vectors, which satisfy the Bohr–Sommefeld condition for a quasi-
bound state in the nuclear potential well. Respectively, the α-decay rate is
determined by the oversimplified formula

λ = pνe−2S , (1)

where p means the formation probability for the α particle, ν the assault
frequency, and e−2S the transmission probability through the Coulomb bar-
rier.

However, the most direct description of any decay process, including α or
cluster decay, is provided by the decay theory, given in the book [4]. Ap-
plying such an approach, we consider the α decay as a transition between
∗ Presented at the XXIII Nuclear Physics Workshop “Marie and Pierre Curie”,
Kazimierz Dolny, Poland, September 27–October 2, 2016.

(69)



70 A.Ya. Dzyublik

the initial bound state ϕa of the parent nucleus and the final states of con-
tinuous spectrum ϕb. In the initial moment t = 0, there is only the parent
nucleus, described by the wave function Ψ(0) = ϕa, without any hint on the
α particle. Afterwards, the wave function of the nuclei Ψ(t) attributes com-
ponents ∼ ϕb, whereas the amplitude of the component ϕa exponentially
attenuates. We shall see that the decay rate λ ∼ e−2S only far from the
Bohr–Sommerfeld restriction. We deal with the decay into levels of the ro-
tational band of the daughter even–even nucleus, having axially symmetric
deformed shape (γ = 0).

Below, we consider the nuclei surrounded by electrons. The Coulomb
potential of the spherical nucleus with the charge number Z, screened by
electrons, may be written as [5]

ΦNscr(r) =
Ze

r
+ Φe(r) =

Ze

r
e−r/rs , (2)

where rs is the screening radius, Φe(r) the potential due to electrons

Φe(r) = −Ze
r

(
1− e−r/rs

)
. (3)

The energies of the parent and the daughter nuclei in the electronic environ-
ment are then given by

εa = Mpc
2 + EIp −

Z2e2

rs
(4)

and

εb = (Md +Mα)c2 + EId −
Z(Z − 2)e2

rs
+ E , (5)

where Mp(d) and Mα are the masses of the parent (daughter) nuclei and
the α particle, respectively, EIp(Id) are the excitation energies of the parent
(daughter) nuclei in the states |IpMp〉(|IdMd〉) with spin I and its projec-
tion M , E is the energy of the relative motion of the α particle and the
daughter nucleus, and r is their relative radius-vector. According to the
energy conservation law εa = εb, one has

E ≈ EId = QId −
2Ze2

rs
, (6)

where the nuclear energy released during the decay is

QId = Mpc
2 − (Md +Mα)c2 + EIp − EId . (7)

Lowering of E by 2Ze2/rs almost completely compensates narrowing of the
Coulomb barrier by the electronic screening [6]. More exact analysis of the
role of electronic screening has been given in [7].
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2. Main definitions

We treat the nucleus as a uniformly charged ellipsoid, whose surface is
drawn up by the radius-vector

R(r̂) = R0

[
1 + β

2∑
µ=−2

D2
µ0(θ)Y2µ(r̂)

]
, (8)

where β is the quadrupole deformation parameter, D2
µ0(θ) is the rotation

matrix, depending on the Eulerian angles θ = θ1, θ2, θ3. The symbols r̂ in (8)
and κ̂ in (23) denote spherical angles for the vectors r and κ, respectively.

The α particle is affected by both the nuclear VN(β; θ, r) and Coulomb
VC(β; θ, r) interactions, depending on the deformation parameter β. Since
β � 1, it is convenient to divide the interactions VN(C)(β; θ, r) into the large
central potential V (0)

N(C)(r), associated with the spherical shape (β = 0) and
a small correction δVN(C)(r) due to deformation

VN(C)(β; θ, r) = V
(0)
N(C)(r) + δVN(C)(θ, r) . (9)

We approximate the nuclear interaction acting within the volume of the
nucleus, 0 ≤ r < R(r̂), by the potential well of the depth U0

V
(0)
N (r) =

{
−U0 , 0 ≤ r < R0 ,

0 , r > R0 ,
(10)

where
R0 = r0

[
(A− 4)1/3 + 41/3

]
, (11)

A is the mass number of the parent nucleus and r0 = 1.22 fm [2].
The nuclear perturbation should be equal to −U0 for R0 ≤ r < R(r̂)

and U0 for R(r̂) ≤ r < R0, i.e.,

δVN(θ, r) = U0 [Θ(R0 − r)Θ(r −R(r̂))−Θ(r −R0)Θ(R(r̂)− r)] , (12)

where
Θ(x) =

{
1 , x > 0 ,
0 , x < 0

(13)

is the Heaviside step function.
As to the spherically symmetric part of the Coulomb interaction, it is

given by

V
(0)
C (r) =

(Z−2)e2

R0

[
3− r2

R2
0

]
Θ(R0−r) +

2(Z−2)e2

r
e−r/rsΘ(r−R0) , (14)
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whereas the correction in the linear approximation in β is [8]

δVC(r) =
6(Z − 2)e2

5

[
r2

R3
0

Θ(R0 − r) +
R2

0

r3
e−r/rsΘ(r −R0)

]
×β

2∑
µ=−2

D2
µ0(θ)Y2µ(r̂) . (15)

The Hamiltonian of the nucleus in the α channel is written as

H = H0 + V , (16)

where H0 is the unperturbed Hamiltonian, while the perturbation is

V = V ′ + δV (θ, r) , (17)

where V ′ is a residual interaction of the nucleons providing α decay, and

δV (θ, r) = δVC(θ, r) + δVN(θ, r) . (18)

In the α channel, the operator H0 contains the following terms:

H0 = K + V (0)(r) , V (0)(r) = V
(0)
N (r) + V

(0)
C (r) . (19)

Here, K̂ is a sum of the kinetic energy operator of the relative motion of
the α particle with respect to the daughter nucleus and the Hamiltonians of
their internal motion

K = − ~2

2µ
∆r +H

(α)
in +H

(d)
in , (20)

the reduced mass µ = MdMα/(Md +Mα).

3. Basis wave functions

The eigenfunction ϕ+
b of H0 factorizes as follows:

ϕ+
b = ψ+

κ (r)|IdMd〉 , (21)

where the nuclear wave functions for the rotational levels are

|IdMd〉 =

√
2Id + 1

8π2
DId

∗

Md0
(θ) . (22)
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The wave function of the relative motion ψ+
κ (r) is represented by the ex-

pansion in partial waves [4]

ψ+
κ (r) =

∞∑
l=0

l∑
m=−l

ileiδl(κ)
wl(κ; r)

κr
Y ∗lm(κ̂)Ylm(r̂) , (23)

depending on the phase shift δl(κ). Here, the radial functions wl(κ; r) satisfy
the equation

w′′l (κ; r)−
[
l(l + 1)

r2
+ v(r)− κ2

]
wl(κ; r) = 0 , (24)

where the reduced potential

v(r) =
2µ

~2
V (0)(r) . (25)

At large r, where l(l + 1)/r2 + v(r) ≈ 0, their asymptotic is [4]

wl(κ; r) ≈
√

2

π
sin

(
κr − lπ

2
+ δl(κ)

)
. (26)

It is useful to introduce the total angular momentum I = Id+l as well as
the eigenfunctions of the squared angular momentum I2 and its projection
on the quantization axis Iz

YMIlId(θ; r̂) =
∑
mMd

(lIdmMd|IM)Ylm(r̂)|IdMd〉 , (27)

where (j1j2m1m2|jm) are the Clebsh–Gordan coefficients. Then the wave
function (21), (23) is rewritten as

ϕ+
b =

∑
IM

∞∑
l=0

wl(κ; r)

κr
YM∗
I (lIdMd; κ̂)YMIlId(θ; r̂) , (28)

where the following notation is introduced

YM
I (lIdMd; κ̂) = i−le−iδl

l∑
m=−l

(lIdmMd|IM)Ylm(κ̂) . (29)
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4. Quasi-classical approximation

Let us solve the radial equation (24) in the quasi-classical (WKB) ap-
proximation, using Langer’s substitution [9]

κr = ex , wl(κ; r) = ex/2yl(x) , (30)

where x varies on the whole axis from−∞ to∞. Then Eq. (24) transforms to

y′′l (x) + q2(x)yl(x) = 0 (31)

with

q2(x) = e2x
(

1− v(x)

κ2

)
−
(
l +

1

2

)2

. (32)

The classical turning points x1, x2 and x3 are now the roots of the
equation q(x) = 0. They are related, respectively, to the points a, R0 and b
on the axis r, for which the wave vector

k(r) =
√
κ2 − (l + 1/2)2/r2 − v(r) (33)

vanishes.
Under the centrifugal barrier on the left-hand side of the turning point x1,

the regular WKB wave function is represented by the attenuating exponent

yl(x) =
Cl√
|q(x)|

exp

− x1∫
x

∣∣q (x′)∣∣ dx′
 , −∞ < x < x1 . (34)

Using standard matching rules, one finds the function in the nuclear poten-
tial well, where x1 < x < x2

yl(x) =
2Cl√
q(x)

cos

 x∫
x1

q
(
x′
)

dx′ − π

4

 . (35)

Making simple manipulations, one gets the function under the Coulomb
barrier as x2 < x < x3

yl(x) =
Cl√
|q(x)|

cosαe−Sl(Q) exp

 x3∫
x

∣∣q (x′)∣∣dx′


− 2 sinαeSl(Q) exp

 x3∫
x

∣∣q (x′)∣∣ dx′
 . (36)
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Here, we introduced the action

Sl(Q) =

x3∫
x2

∣∣q (x′)∣∣dx′ (37)

and the angle

α =

x2∫
x1

q(x)dx− π

2
. (38)

Behind the Coulomb barrier, when x > x3,

yl(x) = − Cl√
q(x)

cosαe−Sl sin

 x∫
x3

q
(
x′
)

dx′ − π

4


+ 4 sinαeSl cos

 x∫
x3

q
(
x′
)

dx′ − π

4

 . (39)

By making use of Eq. (30), one can return to the coordinate r. The angle α
now reads

α =

R0∫
a

k(r)dr − π

2
. (40)

Note that the equality sinα = 0 is fulfilled if

R0∫
a

k(r)dr =
(
n+ 1

2

)
π , n = 0, ±1, . . . , (41)

which is nothing but the Bohr–Sommerfeld quantization rule for a quasi-
stationary level inside the potential well.

The wave function wl(κ; r) at r > b becomes

wl(κ; r) = Cl

√
κ

k(r)

cosαe−Sl cos

 r∫
b

k
(
r′
)

dr′ +
π

4


−4 sinαeSl sin

 r∫
b

k
(
r′
)

dr′ +
π

4

 . (42)
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Comparing it with the asymptotic expression (26), one finds the ampli-
tude of the l-th partial wave

Cl =

√
2

π

[
cos2 αe−2Sl + 16 sin2 αe2Sl

]−1/2
. (43)

Usually, the tunneling probability e−2Sl(Q) � 1. In this case far from the
Bohr–Sommerfeld condition (41), as | sinα| � e−2Sl , the amplitude is of the
order of e−Sl . Otherwise, it attributes large value, Cl ∼ eSl . It is a very
rare event that a parent compound nucleus has such an energy that allows
condition | sinα| ∼ e−2Sl . Its probability is also of the order of e−2Sl .

In the approximation e−2Sl � 1 and | sinα| � e−2Sl , one gets the WKB
wave function inside the nucleus at a < r < R0

wl(κ; r) =
1√
2π

e−Sl

sinα

√
κ

k(r)
cos

 r∫
a

k
(
r′
)

dr′ − π

4

 (44)

and under the centrifugal barrier at 0 < r < a,

wl(κ; r) =
1

2
√

2π

e−Sl

sinα

√
κ

|k(r)|
exp

− a∫
r

∣∣k (r′)∣∣ dr′
 . (45)

In the same approximation e−Sl � 1, the radial function under the Coulomb
barrier, R0 < r < b, is represented by a single exponent

wl(κ; r) =
1√
2π

√
κ

|k(r)|
exp

− b∫
r

∣∣k (r′)∣∣ dr′
 . (46)

Notice once more that if condition (41) is fulfilled, then the wave function
inside the nucleus becomes very large, i.e., wl ∼ eSl .

In full analogy, there can be calculated the irregular WKB solution
zl(κ; r) of Eq. (24), having the asymptotic

zl(κ; r) ≈ −
√

2

π
cos

(
κr − lπ

2
+ δl(κ)

)
(47)

at r →∞.



Alpha Decay of Deformed Even–Even Nuclei 77

5. Decay rate

Let the initial state |a〉 of the parent nucleus be formed at t = 0. Time-
evolution of the wave function at t ≥ 0 is governed by the equation [4]

Ψa(t) = − 1

2πi

∞∫
−∞

dεe−iεt/~G+(ε)Ψa(0) , (48)

where the retarded Green’s operator

G+(ε) = (ε+ iε−H)−1 , ε→ +0 . (49)

The partial α-decay rate into the state with spin Id is yielded by

λId =
2π

~
∑
Md

∫
dΩκ̂

∣∣R+
ba

∣∣2 %(εb) , (50)

where the density of final states is given by

%(εb) = µκId/~
2 (51)

with the wave number
κId =

√
2µEId/~ (52)

and energy EId defined in Eqs. (6), (7). The R+
ba(εa) = Rba(εa + iε) repre-

sents the matrix for the level shift operator, determined by the expansion [4]

R(ε) = V + V
1− Λa
ε−H0

V + . . . , (53)

containing the projection operator

Λa = |a〉〈a| (54)

on the initial state |a〉.
First, the transition occurs from the initial state |a〉 to any state of the

continuous spectrum caused by the interaction V ′ and only then the mixing
transitions between the states ϕ+

b due to perturbation δV . Hence,

R+
ba = V ′ba +

∑
b′

〈b|δV |b′〉V ′b′a
εa + iε− εb′

+ . . . (55)

Here, the brackets 〈. . . 〉 mean the integration over the Eulerian angles θ′ and
vector r′, while the sum over b′ stands for summation over the intermediate
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nuclear states |I ′dM ′d〉 and integration over κ′. Changing the integration
order over θ′, r′ and κ′, we rewrite expression (55) as

R+
ba = V ′ba +

∫
dr

∫
dθ

∫
dr′
∫

dθ′ϕ+∗
b (θ, r)δV (θ, r)

×G+
(
εa; θr, θ

′r′
)
V ′
(
r′
)
ϕa . (56)

Here, the retarded Green’s function is given by

G+
(
εa; θr, θ

′r′
)

= −2µ

~2
∑
I′dM

′
d

∫
dκ′

ϕ+
b′ (θ, r)ϕ+∗

b′ (θ′, r′)

κ′2 − κ2
I′d
− iε

. (57)

Expression (57) transforms to the form

G+
(
εa; θr, θ

′r′
)

=
2µ

~2
∑
Id,l

G+
l (κId ; r, r′)

rr′

∑
IM

Y(M)
IlId

(θ, r̂)Y(M)∗
IlId

(
θ′, r̂′

)
, (58)

containing the partial Green’s functions

G+
l

(
κId ; r, r′

)
= −

∞∫
0

wl(κ; r)wl (κ; r′)

κ2 − κ2Id − iε
dκ . (59)

In order to calculate this integral, we introduce also the function

d
(±)
l (κ; r) = wl(κ; r)± izl(κ; r) , (60)

which is similar to spherical Hankel’s function and has the asymptotics

d
(±)
l (κ; r) ≈ ∓i

√
2

π
e±i(κr−lπ/2+δl(κ)) , r →∞ . (61)

It can be shown that

d
(+)
l (−κ; r) = (−1)ld

(−)
l (κ; r) . (62)

Using this symmetry property, one can transform (59) to

G+
l (κId ; r, r′) = −1

2

∞∫
−∞

wl(κ; r<)d
(+)
l (κ; r>)

κ2 − κ2Id − iη
dκ , (63)
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where r< and r> denote the least and largest values of r and r′. Enclosing
the integration contour at infinity in the upper complex half-plane κ, one
finally finds

G+
l

(
κId ; r, r′

)
= − iπ

2κId
wl(κId ; r<)d

(+)
l (κId ; r>) . (64)

Now, we restrict our consideration to decay of the ground state of an
even–even nuclei with Ip = 0. In this case, Id = l and it is convenient to
introduce more short designation

FId(θ; r̂) ≡ Y(0)
0IdId

(θ; r̂) . (65)

This angular factor is determined by the simple formula

Fl(θ; r̂) =
(−1)l√

8π2

l∑
m=−l

Dl∗
m0(θ)Y

∗
lm(r̂) (66)

to be applied in calculations of the R matrix. Calculating the Rba by means
of Eqs. (58), (64), (56) and (66), one finds the decay rate

λl = λ
(0)
l + δλl . (67)

We neglect the contribution of δVN into δλl. For the decay constant of a
spherical nucleus, we get

λ
(0)
l =

2π

~
|Il|2%(εb) , (68)

where the integral over the volume of the nucleus is

Il =

∫
dr

∫
dθ
wl(κl; r)

κlr
Fl(θ; r̂)V ′|a〉 (69)

with wl(κl; r) given in (45), (46). Strictly speaking, here the integration over
intrinsic coordinates of the nuclei should be also added.

For the correction ∼ β, one gets the expression

δλl = 3ηlβ

√
π

5

∑
l′

(
2l + 1

2l′ + 1

) 1
2 (
l200|l′0

)2
×
(
λ
(0)
l λ

(0)
l′

)1/2 ∞∫
R0

R2
0

r3
wl(κl; r)zl′(κl′ ; r)dr , (70)
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including the dimensionless Sommerfeld parameter

ηl =
2(Z − 2)e2µ

~2κl
. (71)

The constant λ(0)l is proportional to the probability P of finding the
α particle inside the nucleus. By making use of the wave function (44), we
get the decay constant of the spherical nucleus

λ
(0)
l = 4M2 µ

~3
e−2Sl

sin2 αl

R0∫
a

dr

kl(r)
cos2

 r∫
a

kl
(
r′
)

dr′ − π

4

 , (72)

where the fitting factor M has the dimensionality of energy. In derivation
of (72), we neglected small contribution from the region 0 < r < a under
the centrifugal barrier.

Only in the case of decay into the ground state, as Id = l = 0, the wave
number k0(r) takes the constant value K =

√
2µE(K)/~, where the kinetic

energy in the potential well is E(K) = U0 + E. Then in the approximation
KR0 � 1, we arrive at result (1), where the formation probability

p =

(
M
E(K)

)2 (KR0)
2

sin2 α
(73)

depends on the parameters of the potential well, and the knocking frequency

ν =
~K

2R0µ
. (74)

Note also that Eq. (72) is derived far from the Sommerfeld requirement
(41), i.e. when | sinα| � e−2Sl . In the opposite case with | sinα| ∼ e−2Sl ,
the α decay is characterized by unrealistically large decay rate λl ∼ e2Sl .
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