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WILCZYŃSKI PLOTS FOREVER?∗
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Correlations between the energy and the deflection angle of the projec-
tile-like fragments were studied for the 136Xe + 209Bi reaction at E/A = 28
and 62 MeV. Experimental correlations were compared with model calcu-
lations performed by QMD code, including only one-body and both one-
and two-body dissipations — only in the latter case an agreement with
experimental data was obtained. It is shown that at a bombarding energy
of 62 MeV/nucleon, the reaction cross section is still dominated by dissipa-
tive binary reactions involving the survival of well-defined projectile- and
target-like fragments.
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1. Introduction

At low bombarding energies, the mean-field interaction (one-body dissi-
pation) is largely responsible for the dissipation of the initial kinetic energy
into the thermal energy [1]. On the other hand, at high energies (few hun-
dreds MeV/nucleon), the nucleon–nucleon collisions (two-body dissipation)
play dominant role [2]. It is hence expected that the reaction mechanism
will undergo significant changes at higher bombarding energies [3].

The interplay between one- and two-body dissipation leads to appearance
of a balance energy, where the attractive mean-field scattering is balanced
by the repulsive nucleon–nucleon scattering [4] — in that case, one expects
vanishing of Wilczyński plots [5], which are characteristic for dissipative
orbiting at low bombarding energies.
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The purpose of this work is to understand the influence of one- and
two-body dissipation in dissipative orbiting mechanism.

2. Experimental setup

The experiments were performed at the National Superconducting Cy-
clotron Laboratory of Michigan State University. Beams of 136Xe ions
with energies E/A = 28 and 62 MeV were focused on a self-supporting
3.5 mg/cm2 thick 209Bi targets — for details, see Ref. [6].

In this paper, we are presenting experimental data measured by silicon-
detector telescopes placed at an angular region close to the grazing an-
gle. The silicon telescopes were position-sensitive, anticipating laboratory
grazing angles θgr = 6.65◦ (for E/A = 28 MeV) and θgr = 2.96◦ (for
E/A = 62 MeV), with laboratory angular coverage for θ = (3.07◦, 5.89◦)
and θ = (2.01◦, 3.81◦) for energies E/A = 28 and 62 MeV, respectively [7].

3. Theoretical modeling

The typical theoretical modeling of heavy-ion reactions is based on a two-
step process, with the first step describing the collision dynamics and the
second one describing the deexcitation of the created reaction products [8].

In the present study, the interaction stage was modeled using the Quan-
tum Molecular Dynamics (QMD) code CHIMERA [9], with the deexcitation
phase simulated by dynamical version of the GEMINI code [10], assuming an
equilibrium-statistical decay of excited reaction products [11].

In the QMD calculations, the reaction evolution is determined by the
nuclear potential (one-body dissipation) and the particle dynamics leading
to nucleon–nucleon collisions (two-body dissipation). The collisions are de-
termined by the nucleon–nucleon cross section, which is energy- and isospin-
dependent. Any two nucleons are considered candidates for a collision, when-
ever their spatial separation is smaller than the distance related to nucleon–
nucleon cross section — the collisions may be, however, blocked due to the
Pauli principle.

We assume here a soft equation of state (K ≈ 200 MeV) with symmetry
energy strength coefficient corresponding to an ASY-STIFF equation of state
(C = 31.4 MeV).

In order to study the reaction evolution for different dissipation mecha-
nisms, the CHIMERA code was used in two alternative versions:

(i) including one-body dissipation only (mean-field effects only),

(ii) including both one- and two-body dissipation (mean-field plus nucleon–
nucleon collisions).
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4. Wilczyński plots

The logarithmic contour plots of the fragment yield as a function of the
energy and the emission angle of the projectile-like fragments (PLFs) are
presented in Fig. 1 for bombarding energies of E/A = 28 and 62 MeV. The
top panel shows the results for QMD calculations for one-body dissipation
only, while the bottom panel presents results with one- and two-body dissi-
pation. The final deexcitation was simulated with the equilibrium-statistical
decay code GEMINI. Additionally, the crest lines of experimental distribu-
tions in the measured angular range are shown. As one can see (the upper
panels), the one-body dissipation does not reproduce the experimental trend
especially for higher bombarding energy. The ratio of the collective velocity
to the average speed of particles is equal to 0.425 for E/A = 28 MeV and
0.632 for E/A = 62 MeV. So the condition that this ratio should be small
is not fulfilled and, therefore, the applicability of the one-body dissipation
only becomes questionable. Including two-body dissipation mechanism (the
bottom panels) improves very much the comparison with an experiment.

As seen in the top panel of Fig. 1, the calculations performed with one-
body dissipation only (mean-field effects) describe the general collision sce-
nario, showing dissipative orbiting with a subsequent statistical decay of the
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Fig. 1. (Color online) PLF yield as a function of the energy and the emission angle
(LAB system) for bombarding energy E/A = 28 and 62 MeV, as obtained from
QMD + GEMINI simulation (see the text). Dashed lines — results for elastic and
quasi-elastic reactions. White solid lines — crest line of experimental distribu-
tions [7].
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primary PLF. It appears that the reaction picture for peripheral collisions
is essentially the same at E/A = 62 MeV as it was earlier found at lower
bombarding energies [5].

Introduction of nucleon–nucleon collisions (bottom panel) adds an extra
dissipation, what is seen in lowering of energy of the PLF residue. As an ad-
ditional effect, one observes broadening of observed distributions, what can
be understood taking into account the random nature of nucleon–nucleon
collisions. For bombarding energy E/A = 62 MeV, one can notice a pro-
nounced reduction of deflection angle for lower branch of distribution (high
dissipation region) caused by introducing nucleon–nucleon collisions (two-
body dissipation). This effect will grow with increase of bombarding energy,
causing a vanishing of Wilczyński plots for a certain value of balance en-
ergy [4].

Consequently, in a view of the above study, the presence of Wilczyński
plots for energy as high as E/A = 62 MeV shows that the transition to
a high-energy scenario dominated by two-body interactions and two-body
dissipation must be occurring at higher bombarding energies.

5. Summary and conclusions

In the performed analysis, the projectile-like fragment deflection func-
tion was found as a sensitive signature for one- and two-body dissipations
modeling. While the one-body dissipation seems to be responsible for gen-
eral features of dissipative orbiting, only an inclusion of nucleon–nucleon
collisions (two-body dissipation) gives proper reaction description.

The correlations between the energy and the emission angle of projectile-
like fragments shows that peripheral collisions, for energies as high as E/A =
62 MeV, are still governed by dissipative orbiting — a characteristic feature
of low bombarding energies (Wilczyński plots forever?).
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