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A series of experiments show that the physical time is the same kind of
quantum observable as the spatial position. Using the projection evolution
as the extension of the standard Schrödinger type evolution, the decay of
a two-particle system in the case of limited allowed space (box) is consid-
ered. A very schematic model is used to show the size effects in the decay
probability distribution.
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1. Introduction

In the standard approach to the quantum mechanics, time is considered
as an events ordering parameter. The experiments in which the temporal
interference is obtained show [1,2] that this concept is only an approximation
and that the quantum time should be the same kind of a quantum observable
as the position in space [3–5].

The time scale, in which the temporal quantum effects emerge, is of
the order of femtoseconds and shorter. In order to treat the time as quan-
tum observable, we developed the projection evolution formalism (PEv), see
[7–12]. In this formalism, the quantum evolution is a stochastic process in
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which the subsequent quantum events are randomly created, with the prob-
ability distribution determined by the actual state of the system and the
so-called evolution operators.

In this work, we show that the projection evolution approach allows to
investigate temporal effects in the decay of nuclei and any other quantum
systems in terms of the competition between remaining in the bound state
and decaying. The key assumption here is that time is a dynamical variable,
not a parameter. In this paper, we discuss the possible role of the external
clock in the decay process. It is not our goal to provide a realistic scenario
of these processes which, especially for fast processes as those observed in
nuclear reactions, should include temporal effects, too. This paper is, to
some extend, the continuation of [6].

2. Two-particle system

To schematically show a possible scenario of the decay process as the
projection quantum evolution, we consider two spinless particles in the non-
relativistic space-time X. The relativistic case can be treated in an analog-
ical way and will be described elsewhere.

First, we introduce the notation and conventions used in this paper. The
coordinates of the nth particle, n = 1, 2, . . . , A, in the N + 1 dimensional
space-time are denoted by xn = (x0n, x

1
n, x

2
n, . . . , x

N
n ) = (ctn, ~xn). Simi-

larly, the linear momentum is denoted by pn = (pn0, pn1, pn2, . . . , pnN ) =
(En/c, ~pn). The corresponding components of the linear momentum opera-
tor for the nth particle are

(p̂n0, p̂n1, p̂n2, . . . , p̂nN ) =

(
i~

∂

∂x0n
,−i~ ∂

∂x1n
, . . . ,−i~ ∂

∂xNn

)
.

Next, we introduce the relative and the “center-of-mass” coordinates in
the space-time X. For a two-particle system (A = 2), they read

xµ = xµ2 − x
µ
1 ,

ξµ =
1

Mµ

(
m1µx

µ
1 +m2µx

µ
2

)
, (1)

where mn0 ≡ mnT and mn1 ≡ mnX denote the coefficients which we call
masses of the particles. The coefficient mnT is the temporal mass of the
nth particle and mnX is the appropriate spatial mass. The coefficient Mµ =
m1µ +m2µ can be called the total mass of this two-particle system.

Using these variables, one can introduce the total linear momentum P̂µ

P̂µ ≡ i~
∂

∂ξµ
= p̂1µ + p̂2µ (2)
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and the operator of the relative momentum q̂µ

q̂µ = i~
∂

∂xµ
=

1

Mµ
[−m2µp̂1µ +m1µp̂2µ] . (3)

2.1. Simplified generator of the projection evolution
for a two-particle system

For two-particle spinless system, A = 2, the simplified quantum evolu-
tion generator1 expanded in linear momenta up to the second order, can be
written as

Ŵ−(τ) =
A∑
n=1

∑
µ

anµ(τ)p̂nµ +
A∑

n1,n2=1

∑
µ,ν

bn1n2;µν(τ)p̂n1µp̂n2ν

−
A∑

n1<n2

Vn1n2 (xn1 , xn2) + h.c. (4)

The requirement of the spatial rotational and translational symmetries sim-
plifies this expression. After choosing the coordinates of the principal axis
of the quadratic form in linear momenta, one gets

Ŵ−(τ) =
A∑
n=1

an0(τ)p̂n0 +
A∑
n

∑
µ

bn;µ(τ)p̂nµp̂nµ

−
A∑

n1<n2

Vn1n2(xn1 , xn2) + h.c. (5)

In this way, we also require that the interaction term
∑A

n1<n2
Vn1n2(xn1 , xn2)

has to be invariant with respect to spatial rotations.
One needs to note that the evolution generators are defined up to trans-

formations which leave the eigenspaces of these generators invariant. Par-
ticularly Ŵ− and cŴ−, where c is an arbitrary non-zero real number, determine
the same projection evolution operators. This property allows to choose one
of the coefficients arbitrarily. Let us assume, in analogy to the Schrödinger
equation, that an0(τ) = aT(τ) = 1. Similarly, one can expect that the coef-
ficients bn;µ(τ) are inversely proportional to the masses with the appropriate
signs

Ŵ−(τ) =
A∑
n=1

p̂n0 + p̂2n0
2mn0

−
dim(X)∑
µ=1

p̂2nµ
2mnµ

−
A∑

n1<n2

Vn1n2(xn1 , xn2) . (6)

1 The projection operators projecting on eigenspaces of the evolution generator are the
evolution operators.
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In what follows, we work in a two-dimensional space-time, i.e., we consider
only one temporal and one spatial coordinate. The generalization to more
spatial dimensions is straightforward. In our case, the transformation to the
relative coordinates (1) gives

Ŵ−(τ) = P̂0 +

(
P̂0

)2
2MT

−

(
P̂1

)2
2MX

+
(q̂0)

2

2mT
−

[
(q̂1)

2

2mX
+ V (τ ; ξ, x)

]
, (7)

where ξ = (ξ0, ξ1) are the center-of-mass coordinates and x = (x0, x1) rep-
resents relative coordinates between two particles. The coefficientsMX , MT

are “space” and “temporal” total masses of both particles, respectively. The
coefficients mX , mT denote the reduced “spatial” and “temporal” masses.

Let us now assume that the evolution parameter is τ = τn, where
n = 0, 1, 2, . . . The evolution parameter τ is the common parameter for
every physical subsystem. It orders the evolution steps. It has no metric
structure but allows for introducing a kind of quantum causality (forward
and backward).

As the next step, we modify generator (7) adding two external potentials
to localize particles in space and time. This is a useful step, even though
these potentials break the translational symmetry.

At the beginning, we consider the evolution generator for τ = τ0. The
first modification is adding the temporal potential UT(ξ

0). This potential
represents the averaging of times of particles in the environment of our two-
particle system, which we assume to be open. The second potential UX(ξ1)
is added for technical reason to avoid unnormalizable vectors in the spatial
part of the center-of-mass variable ξ1. The evolution generator takes now
the form

Ŵ−σ(τ0) =

[
P̂0 +

(
P̂0

)2
2MT

+ UT

(
ξ0
) ]
−

[(
P̂1

)2
2MX

+ UX
(
ξ1
) ]

+
(q̂0)

2

2mT
− (q̂1)

2

2mX
− Vσ

(
x0, x1

)
, (8)

where the sign in front of the interaction term V is arbitrary. It is chosen
here in such a way that, after neglecting time dependence, the traditional
form T + V is obtained. We add also the subscript σ which distinguishes
between two situations: the particles before (σ = 1) and after (σ = 2) the
decay. The interaction between particles is chosen as independent of τ .

According to the PEv formalism, any change of the environment leads to
the change of τ , which generates the next step of the projection evolution.
In this context, the evolution generator should be a function of τ . Even
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though the time evolution is a stochastic process, the total temporal linear
momentum P0, which is responsible for the shift of the evolution genera-
tor (8), seems to be a non-negative number for both particles. Thus, P̂0

determines the arrow of time. This suggests the existence of an averaged
characteristic time interval tE generated by the environment, which gives an
averaged shift τ0 → τn of the evolution generator

Ŵ−σ(τn) = eintEP̂0/~Ŵ−σ(τ0)e−intEP̂0/~

=

[
P̂0 +

(
P̂0

)2
2MT

+ eintEP̂0/~UT

(
ξ0
)
e−intEP̂0/~

]

−

[(
P̂1

)2
2MX

+ UX
(
ξ1
) ]

+
(q̂0)

2

2mT
− (q̂1)

2

2mX
− Vσ

(
x0, x1

)

=

[
P̂0 +

(
P̂0

)2
2MT

+ UT

(
ξ0 − ntE

) ]
−

[(
P̂1

)2
2MX

+ UX
(
ξ1
) ]

+
(q̂0)

2

2mT
− (q̂1)

2

2mX
− Vσ

(
x0, x1

)
, (9)

where n = 0, 1, 2, . . . The “external time” ξ0 is approximately discretized
by tE. The time interval tE is an average period of the external time during
which Nature decides which of the two channels to choose: decay or not
decay. Because one observes that particles are quite well-localized in time,
one can assume that the temporal potential UT(ξ

0) has a deep minimum for
ξ0 = 0.

Similarly, one can expect that, e.g., the temporal part of the electro-
magnetic interaction between two particles should lead to the localization
of particles in time. It means that the mesoscopic and the macroscopic
worlds can be in many aspects well-described by time treated as a param-
eter. This leads to the confinement of both particles close to the minimum
of the potential UT(ξ

0).

3. Decay or not decay inside of a box, this is the question

In this section, we consider a very simplified model of the decay of a two-
particle system. We expect two sets of preferred states coming from two
generators Ŵ−1(τ) and Ŵ−2(τ). The first set is a collection of bound states
of this two-particle system and the second one corresponds to the system
of two spatially independent particles. To keep the simplicity of the model,
the possible quantum temporal effects like time interference are to some
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extend neglected by the decoupling of the spatial and temporal motions in
the interaction terms of the evolution generators. This decoupling also leads
to a stronger localization of the particles in time.

3.1. Spectral decomposition of the evolution generators

As it was mentioned earlier in our schematic model, we assume the inter-
action to be independent of τ . The only difference between both generators
Ŵ−1(τ) and Ŵ−2(τ) is in the interaction terms Vσ(x0, x1), for σ = 1, 2. To find
the set of the evolution operators, one needs to get the spectral decomposi-
tions of both generators

Ŵ−σ(τn) =
∑
α

w(σ)
α E|(τn;σ, α) , (10)

where the projection operators E|(τn;σ, α) play the role of the evolution op-
erators. The spectral decomposition of (10) can be found by solving the
eigenproblems of the generators Ŵ−σ(τn)

Ŵ−σ(τn)ψ(σ)
αβ

(
τn; ξ

0, ξ1, x0, x1
)
= w(σ)

α ψ
(σ)
αβ

(
τn; ξ

0, ξ1, x0, x1
)
, (11)

where σ = 1, 2 and the eigenvalues w(σ)
α are, in general, degenerated.

The projection operators E|(τn;σ, α) can be explicitly written as

E|(τn;σ, α) =
∑
β

∣∣∣ψ(σ)
αβ (τn)

〉〈
ψ
(σ)
αβ (τn)

∣∣∣ . (12)

The external clock is here simulated by the shifts of the potential UT(ξ
0),

which localizes the particles at the vicinity of the temporal center of mass ξ0.
This temporal potential is assumed here to be the harmonic oscillator po-
tential

UT

(
ξ0
)
= 1

2MTω
2
T

(
ξ0
)2
. (13)

Every tick of the external clock is treated as a new step of the projection
evolution. In other words, we consider the quantum projection evolution in
which the two-particle system moving to the next step of its evolution either
remains bounded or decays.

The technical potential UX(ξ1) is added to avoid problems with the
continuous spectrum. In the following, we use

UX
(
ξ1
)
= 1

2MXω
2
X

(
ξ1
)2 (14)

with a very small omega, ωX ∼ 0. The interaction we consider is the sum
of the temporal and spatial interaction terms

Vσ
(
x0, x1

)
= −V T

σ

(
x0
)
+ V X

σ

(
x1
)
, (15)
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where V T
σ (x0)=V∞(aT;x

0), V X
1 (x0)=V∞(aX ;x

1), and V X
2 (x0)=V∞(L;x1).

Here, V∞(a;xµ) denotes the infinite well type interaction defined as

V∞(a;xµ) =

{
0 , for |xµ| < a ,

∞ , for |xµ| ≥ a .
(16)

The parameters a = aT, aX simulate the range of the temporal and spatial
interactions, respectively. The parameter L > aX describes the size of the
free spatial box in which our two-particle system decays. This box is sim-
ulated by the upper limit L of the distance between the free particles after
the decay.

The eigenvalues of generators (11) can thus be written as

w(σ)
α = λ(T)

κ0 − λ
(X)
κ1 + λ(T,σ)πT,sT

− λ(X,σ)πX ,sX
, (17)

where different values of α describe distinct eigenvalues. The corresponding
eigenvectors are

ψ
(σ)
αβ

(
τn; ξ

0, ξ1, x0, x1
)
=χ(T)

κ0

(
ξ0 − ntE

)
χ(X)
κ1

(
ξ1
)
φ(T,σ)πT,sT

(
x0
)
φ(X,σ)πX ,sX

(
x1
)
.

(18)
Here, n = 0, 1, 2, 3, . . . and κ0, κ1, πT, sT, πX , sX are the harmonic oscilla-
tor quantum numbers of the global temporal motion and the global spatial
motion, parity of the temporal relative motion function and its quantum
number, the parity of the spatial relative motion function and its quantum
number, respectively. The quantum number β = {κ0, κ1, πT, sT, πX , sX}
distinguishes the eigenvectors belonging to a given eigenvalue w(σ)

α . The
global temporal motion is described by the eigenfunctions

χ(T)
τn,κ0

(
ξ0
)
≡ χ(T)

κ0

(
ξ0 − ntE

)
= eintEP̂0χ(T)

κ0

(
ξ0
)
= eiMT(ξ0−ntE)/~uκ0

(
ηT; ξ

0 − ntE
)
, (19)

with n = 0, 1, 2, 3, . . . and the corresponding eigenvalues

λ(T)
κ0 = ~ωT

(
κ0 +

1

2

)
− MT

2
. (20)

The functions uκ0(ηT; ξ0) are the eigenfunctions of the one-dimensional har-
monic oscillator,

ul(η;x) =

√
η√
π2ll!

Hl(ηx) exp

(
−η

2x2

2

)
, (21)
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where η =
√
mω/~. The global spatial motion is determined here by the

harmonic oscillator functions

χ(X)
κ1

(
ξ1
)
= uκ1

(
ηX ; ξ

1
)
, (22)

and the eigenvalues
λ(X)
κ1 = ~ωX

(
κ1 +

1
2

)
. (23)

The eigenfunctions of the relative motion are given by the eigenvalue problem
with the infinite well potential. We denote these eigenfunctions by

vs($, a;x
µ)=

 1√
2a

cos
(
π(2s+1)

2a xµ
)
δ(|xµ|<a) , for $=+1 , s=0, 1, 2, . . . ,

1√
2a

sin
(
πs
a x

µ
)
δ(|xµ|<a) , for $=−1 , s=1, 2, . . . ,

(24)
where δ(|x| < a) = 1 for |x| < a and zero otherwise, and $ = ±1 denotes
the parity of the eigenfunctions. The corresponding eigenvalues are

λ∞a;$,s =
~2π2

2ma2

{(
2s+1
2

)2 for $ = +1 ,

s2 for $ = −1 .
(25)

Using these functions, the temporal relative motion is described by

φ(T,σ)πT,sT

(
x0
)
= vsT

(
πT, aT;x

0
)
,

λ(T,σ)πT,sT
= λ∞aT;πT,sT , (26)

and the spatial relative motion before (σ = 1) and after (σ = 2) the decay
is given by

φ(X,σ)πX ,sX

(
x1
)

=

{
vsX

(
πX , aX ;x

1
)

for σ = 1 ,

vsX
(
πX , L;x

1
)

for σ = 2 ,
(27)

λ(X,σ)πX ,sX
=

{
λ∞aX ;πX ,sX

for σ = 1 ,

λ∞L;πX ,sX for σ = 2 .
(28)

3.2. Evolution operators and the decay probability

The evolution operators constructed as projections onto eigenspaces of
the generators Ŵ−σ(τn) have the standard form (12)

E|(τn;σ, α) =
∑

κ0,κ1,sT,sX

δ
(
w(σ)
α = λ(T)

κ0 − λ
(X)
κ1 + λ(T,σ)πT,sT

− λ(X,σ)πX ,sX

)
×
∣∣∣ψ(σ)
ακ0,κ1,πT,sT,πX ,sX

(τn)
〉〈

ψ(σ)
ακ0,κ1,πT,sT,πX ,sX

(τn)
〉
, (29)

where δ(a = b) = 1 if a = b and zero otherwise.
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In this model, we have a set of events represented by two orthogonal
decompositions of unity E|(τ ;σ, α), σ = 1, 2. The renormalized operators
belonging to both sets can be considered as the evolution operators

E|′(τn;σ, α) =
√
pσ E|(τn;σ, α) , (30)

where p1, p2 ≥ 0 and p1 + p2 = 1 are the maximal probabilities of choosing
either the first channel (not decay) or the second channel (decay). The
operators

E|′(τn;σ, α)†E|′(τn;σ, α) = pσE|(τn;σ, α) (31)

give the positive operator valued measure (POVM) which defines the re-
quired quantum probability measure determining the probability of choosing
the next state for the following step of the evolution.

Assuming that the density operator ρ(τn; σ̃, α̃) represents the state of the
system for τ = τn, the next state for τ = τn+1 is chosen randomly according
to PEv as

ρ(τn+1;σ, α) =
E|′(τn+1;σ, α)ρ(τn; σ̃, α̃)E|′(τn+1;σ, α)

Tr
(
E|′(τn+1;σ, α)ρ(τn; σ̃, α̃)E|′(τn+1;σ, α)

) , (32)

with the probability distribution

pev(τn+1; (σ̃, α̃)→ (σ, α)) = pσTr (E|(τn+1;σ, α)ρ(τn; σ̃, α̃)) . (33)

The total temporal P̂0 and spatial P̂1 momenta are conserved quantities. In
our model, this property is broken by the generators Ŵ−σ(τn) because of the
external potentials UT and UX . To fulfill the conservation law on average,
however, we keep the quantum numbers κ0 and κ1 fixed during the evolution
process. One can find that for the special case of a decay from the state with
positive parity and κ0 = 0, for either a very small elementary clock tick tE or
a wide temporal potential UT, i.e., for ηTtE ∼ 0, the probability of changing
κ0 is very small. The same effect can be observed for ηTtE & 5. In our
example of the application of this model, we will assume κ̃0 = κ0.

To neglect the temporal interaction effects, which require more detailed
analysis and are out of scope of this article, we fix the range aT of the
temporal interaction. Assuming, in addition, that the model parameters
are chosen so that the generators have no degeneracy in their spectra, the
evolution operators reduce to simple, one-dimensional operators

E|′(τn+1;σ, κ0, κ1, πT, sT, πX , sX) = (34)∣∣∣χ(T)
τn+1,κ0χ

(X)
κ1 φ(T,σ)πT,sT

φ(X,σ)πX ,sX

〉√
pσ

〈
χ(T)
τn+1,κ0χ

(X)
κ1 φ(T,σ)πT,sT

φ(X,σ)πX ,sX

∣∣∣ .
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Assume now that for τ = τn, the particles are in an eigenstate of the gener-
ator Ŵ−σ̃(τn): |χ(T)

τn,κ̃0
χ
(X)
κ̃1

φ
(T,σ̃)
π̃T,s̃T

φ
(X,σ̃)
π̃X ,s̃X

〉. The transition probability (33) to a
new state is now given by the simple scalar products

pev(τn+1; (σ̃, κ̃0, κ̃1, π̃T, s̃T, π̃X , s̃X)→ (σ, κ0, κ1, πT, sT, πX , sX))

= δκ1κ̃1δπTπ̃TδπX π̃X δsTs̃Tpσ

∣∣∣〈χ(T)
τ1,κ0

∣∣∣χ(T)
τ0,κ̃0

〉∣∣∣2 ∣∣∣〈φ(X,σ)πX ,sX

∣∣∣φ(X,σ̃)πX ,s̃X

〉∣∣∣2 . (35)
The last equation is obtained using the unitarity of transformation (19).
Note that probability (35) is, in this schematic model, independent of the
evolution parameter τ .

The bound system can decay to different free particle states with different
probabilities. In Fig. 1, examples of the transition probabilities ((σ̃ = 1, κ̃0 =
0, κ̃1, π̃T, s̃T, π̃X = +1, s̃X = 0) → (σ=2, κ0=0, κ1, πT, sT, πX = +1, sX =
1, 5, 9, 13))) are presented as functions of γ = aX

L , which is the ratio of the
interaction range aX in the position space and the spatial size of the box L.
One clearly sees that the terms with lower sX dominate, with the leading
role played by the sX = 1 contribution. This term drops to zero as γ → 1.

sX = 1

sX = 9

sX = 5

sX = 13

0.10 0.15 0.20 0.25
Γ

0.005

0.010

0.015

0.020

pev

Fig. 1. A few examples of the transition probabilities from the bound to unbound
states, as functions of γ = aX/L.

The most interesting is the total decay probability in one evolution step
from a given fixed state to all allowed states. To calculate the total decay
probability, one needs to sum up the partial probabilities (35) over the al-
lowed final states, i.e., the states with lower than initial energy represented
by the spatial Hamiltonian.

Assume that at the evolution step τn, we still have the two-particle sys-
tem bounded. Because, in this case, the evolution operator projects on the
eigenspaces of the generator Ŵ−1(τn), the two-particle system has to be in an
eigenstate of Ŵ−1(τn)

Ψn,ν̃
(
τn; ξ

0, ξ1, x0, x1
)
= ψ

(σ̃=1)
κ̃0,κ̃1,πT,s̃T,πX ,s̃X

(
τn; ξ

0, ξ1, x0, x1
)
, (36)
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where ν̃ = (σ̃, κ̃0, κ̃1, πT, s̃T, πX , s̃X). The Hamiltonians which determine
the set of allowed final states, i.e., states with the appropriate energies, are
of the form of

H(σ) =
(q̂1)

2

2mX
+ Vσ

(
x1
)
. (37)

In our case, the eigenstates of the evolution generators are also eigenstates of
the Hamiltonians H(σ) and it is enough to compare the appropriate eigen-
values to find the set of allowed final quantum numbers. Because we assumed
no changes in the temporal part of the interaction between particles, for ev-
ery initial quantum number s̃X , we need to find the set of the final quantum
numbers sX . Using formulae (25), one gets the maximal allowed value of sX
as a function of initial s̃X

sX,max =

{
1
γ s̃X for πX = −1 ,
1
2

(
1
γ (2s̃X + 1)− 1

)
for πX = +1 .

(38)

The total decay probability from the state Ψn,ν̃ , given by Eq. (36), to the
set of allowed states Ψn+1,ν is

pevD = δκ1κ̃1δπTπ̃TδπX π̃X δsTs̃T

×p2
∣∣∣〈χ(T)

τ1,κ0

∣∣∣χ(T)
τ0,κ̃0

〉∣∣∣2 ∑
sX≤sX,max

∣∣∣〈φ(X,σ=2)
πX ,sX

∣∣∣φ(X,σ̃=1)
πX ,s̃X

〉∣∣∣2 . (39)
As it was mentioned earlier, this elementary decay probability does not de-
pend on the evolution parameter τn explicitly. Using the above observations
we see that, in our case, every step of the projection evolution leads to a con-
stant probability bD = pevD(g.s. → (σ = 2, κ0 = 0, κ1, πT = +1, sT, πX =
+1, sX = 0)) for the decay and (1 − bD) for remaining in the undecayed
state. In Fig. 2 the total probability decay from a given evolution step to
the next one is plotted as a function of the γ parameter. The decay goes
from the positive parity state with s̃X = 0, and κ̃0 = 0.

The minimal value of the parameter γ = 0 corresponds either to the
zero-range interaction in the finite-size box (L < ∞) or to the infinite box
(L =∞). The maximal value of γ = 1 describes the maximal-range in-
teraction in the box — it simulates a kind of a long range interaction. In
Fig. 2, the total decay shows the influence of the size of the box on the decay
probability — more free space for the decaying particles implies larger de-
cay probability. The jumps of the decay probability curve correspond to the
change of numbers of allowed states to which the system can decay. Both
features seem to be a characteristic behaviour of the decay in a spatial box.
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Fig. 2. The total decay probability as a function of γ = aX/L, from the bound to
all allowed unbound states.

4. Summary

In this paper, we considered a very schematic model of a decay of a two-
particle system. We have used an extension of the standard quantum me-
chanics called the projection evolution (PEv), which allows to treat time on
the same footing as the spatial coordinates. In our model, however, we have
strongly reduced the most possible temporal effects, which deserve a more
advanced analysis. On the other hand, the external time (external clock)
determined by the environment of our two-particle system is considered. We
have studied the competition between two processes: the evolution of our
system in the external time without and with the decay. In our calculations,
we have considered the effects of the size of the box versus the interaction
range, which turned out to be an important factor for the decay.
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