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We consider calculation schemes in the framework of the Kantorovich
method — reduction of a elliptic boundary-value problem to a system of
second order ordinary differential equations (ODEs) using the surface func-
tions depending on the ODEs-independent variable as a parameter. We
propose construction of the new parametric surface basis functions in an
analytical form for solving the boundary-value problem of a quadrupole
vibration collective nuclear model.
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1. Introduction

In a recent paper, the consistent approach to quadrupole–octupole col-
lective vibrations coupled with the rotational motion was presented [1]. In
this approach, the symmetrized orthogonal basis of zero-, one-, two- and
three-phonon oscillator-like functions in vibrational part, coupled with the
corresponding Wigner function has been applied for solving the boundary
value problem (BVP) in the 6D domain [2]. The algorithms for construction
of the symmetrized basis was considered in [3, 4] with respect to the sym-
metrization group [5]. In paper [6], the 2D BVP was solved by the finite
difference method that was a part of the BVP in the 6D domain. However,
this approach did not obtain generalization on the multidimensional domain.

In this paper, we consider the alternative approach for solving the BVP
in a multidimensional domain in the framework of the Kantorovich method
— reduction of an elliptic BVP to a system of second order ordinary dif-
ferential equations (ODEs) using the surface functions depending on the
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ODE-independent variable as a parameter [7]. We propose construction of
the new parametric surface basis functions in an analytical form for solving
the BVP of a quadrupole vibration collective nuclear model using finite el-
ement method (FEM). The efficiency of calculation scheme is shown by a
benchmark calculation of the 2D BVP.

2. Kantorovich method

Let us consider the BVP in the 2D domain Ω(xf , xs) ⊂ R2(
− ∂2

∂x2s
− ∂2

∂x2f
+ V (xf , xs)− E

)
Ψ (xf , xs) = 0 ,

Ψ(xf , xs)
∣∣∣
(xf ,xs)∈∂Ω

= 0 , (1)

where V (xf , xs) is a real-valued function and Ψ(xf , xs) satisfies the Dirichlet
boundary condition (BC) at the boundary ∂Ω ≡ ∂Ω(xf , xs) of the domain
Ω(xf , xs). The solution Ψ(xf , xs)∈W 2

2 (Ω) of the BVP (1) is sought in the
form of Kantorovich expansion [7]

Ψi(xf , xs) =

jmax∑
j=1

Φj (xf ;xs)χji(xs) , (2)

using the set of eigenfunctions of the parametric BVP(
− ∂2

∂xf
+ V0 (xf , xs)− εj(xs)

)
Φj(xf ;xs) = 0 (3)

defined in the interval xf ∈ (xmin
f (xs), x

max
f (xs)) = Ωxf (xs) and depending

on the variable xs ∈ Ωxs as a parameter. These functions obey the BCs

Φj
(
xmin
f (xs);xs

)
= 0 , Φj

(
xmax
f (xs);xs

)
= 0 (4)

at the boundary points {xmin
f (xs), x

max
f (xs)} = ∂Ωxf (xs) of the interval

Ωxf (xs). The eigenfunctions satisfy the orthonormality condition

〈Φi|Φj〉 =

xmax
f (xs)∫

xmin
f (xs)

Φi(xf ;xs)Φj (xf ;xs) dxf = δij . (5)

Here, ε1(xs) < . . . < εjmax(xs) < . . . is the desired set of real eigenvalues.
If this parametric eigenvalue problem has no analytical solution, then it is
solved numerically by the FEM using the program ODPEVP [8].
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Substituting expansion (2) into Eq. (1) with Eqs. (4) and (5) taken into
account, we arrive at the set of self-adjoint ODEs for the unknown vector
functions χ(i)(xs, E) ≡ χ(i)(xs) = (χ

(i)
1 (xs), . . . , χ

(i)
jmax

(xs))
T

(
−I d2

dx2s
+U(xs)− 2E I+

dQ(xs)

dxs
+Q(xs)

d

dxs

)
χ(i)(xs) = 0 . (6)

Here I, U(xs) and Q(xs) are matrices of the dimension jmax × jmax

Iij = δij , Uij(xs) = εi(xs)δij +Hij(xs) + Vij(xs) , (7)

Hij(xs) = Hji(xs) =

xmax
f (xs)∫

xmin
f (xs)

∂Φi (xf ;xs)

∂xs

∂Φj (xf ;xs)

∂xs
dxf , (8)

Qij(xs) = −Qji(xs) = −

xmax
f (xs)∫

xmin
f (xs)

Φi (xf ;xs)
∂Φj(xf ;xs)

∂xs
dxf , (9)

Vij(xs) = Vji(xs)=

xmax
f (xs)∫

xmin
f (xs)

Φi (xf ;xs) (V (xf , xs)−V0 (xf , xs))Φj(xf ;xs)dxf .(10)

The solutions of the discrete spectrum E : E1 < E2 < . . . < Ev < . . .
that obey the BCs at the points xts = {xmin

s , xmax
s } = ∂Ωxs , bounding the

interval Ωxs and satisfy the orthonormality conditions are

χ(p)(xts) = 0 , xts = xmin
s , xmax

s ,

xmax
s∫

xmin
s

(
χ(i)(xs)

)T
χ(j)(xs)dxs = δij .

(11)
The quadrupole potential energy are approximated by quartic potential

V (a22, a20) = c1
(
a222 + a220

)
+ c2

(
a222a20 − a320/3

)
+ c3

(
a222 + a220

)2
+ c0 .

(12)
We use a set of parameters c1 = −120, c2 = 240, c3 = 1200, c0 = 65/16
that are a crude approximated shape of 156

64 Gd92 which has been fitted in
the following points1: minima at (a22, a20) = (0, 1/4), V (0, 1/4) = 0; max-
ima at (a22, a20) = (0, 0), V (0, 0) = 65/16; and saddle points: (a22, a20) =

1 This shape has been fitted in the following points in our parametrization connected
with [1] by relations a22 =

√
2α22, a20 = α20.
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(0,−1/5), V (0,−1/5) = 729/400 (see Fig. 1). We choose the mass param-
eter m = B2 = 124, thus there are ground and double degenerated excited
states localized in three wells.

n Ẽn = 2mEn En irr.

1 381.754 1.53933 A1
2,3 387.240 1.56145 E
4,5 617.024 2.48800 E
6 667.104 2.68993 A2
7 695.166 2.80309 A1
8,9 785.680 3.16806 E
10 898.045 3.62115 A1
11,12 915.823 3.69283 E
13,14 993.158 4.00467 E
15 1063.73 4.28926 A1
16 1119.21 4.51296 A2
17,18 1174.71 4.73674 E

Fig. 1. The potential energy of quadrupole shape. The first energy levels En [MeV]
of the problem at N = 28 parametric basis functions.

The solutions of the problem (1)–(12) have been calculated by the Kan-
torovich method using N = 28 parametric basis functions at V0(xf , xs) =
V (xf , xs) with the help of the FEM program KANTBP 2 [9]. We solve
the above eigenvalue problem on a domain

√
a220 + a222 < 1/2 with the

Dirichlet BCs at the boundary
√
a220 + a222 = 1/2 by the scheme presented

above. We perform calculations in the case of (xf , xs) = (a22, a20) as well as
(xf , xs) = (a20, a22) on the finite element grid {−1/2(6)1/2} with the La-
grange interpolation polynomials of the order of p = 12. The first 18 eigen-
values have been calculated with 10 significant digits and presented with 6
significant digits in table of Fig. 1. As it follows from the discrete symmetry
C3v of the problem (1), (12), we have four irreducible representations (irrs.)
A1, A2, E1 and E2 for classification of solutions and besides the E-type, the
states are double degeneracy [10, 11]. The first eigenfunctions for each irr.
A1, A2, E1, E2 are presented in Fig. 2.
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Fig. 2. Nondegenerated functions Ψ1(a22, a20) (irr. A1) and Ψ6(a22, a20) (irr. A2)
and degenerated functions Ψ2(a22, a20) (irr. E1) and Ψ3(a22, a20) (irr. E2).

3. Parametric surface functions in analytical form

Let us consider the BVP for Eq. (3) with etalon potential V0(xf , xs)(
− ∂2

∂x2f
+ V0(xf ;xs)− E

)
Ψ(xf ;xs) = 0 ,

V0 (xf , xs) = V0(xs) + ω2(xs)(xf − z0(xs))2 . (13)

In the considered case the parametric eigenvalue problem (3)–(5) has an
exact solution, i.e., the parametric eigenfunctions Φi(xf ;xs) and potential
curves εi(xs) are expressed in the analytical form

εi (xs) = V0(xs) + ω(xs)(2(i− 1) + 1) ,

Φ1 (xf ;xs) =
ω1/4(xs)

π1/4
exp

(
−ω(xs)(xf − z0(xs))2/2

)
,

Φi (xf ;xs) =

√
2
√
ω(xs)(xf − z0(xs))√

i− 1
Φi−1 (xf ;xs)−

√
i− 2√
i− 1

Φi−2 (xf ;xs) .

(14)

The integration in the effective potentials (8)–(9) with the basis functions
(14) is carried out analytically, which yields the expressions

Qij(xs)=sign(j−i)

(√
2nω(xs)

2

dz0(xs)

dxs
δ|j−i|,1 −

√
n(n−1)
4

dω(xs)

dxs
δ|j−i|,2

)
,

Hij(xs)=

(
n2 + n+ 1

8ω2(xs)
δj−i,0 −

√
n(n−1)(n−2)(n−3)

16ω2(xs)
δ|j−i|,4

)(
dω(xs)

dxs

)2

+

(
ω(xs)(2n+ 1)

2
δj−i,0 −

ω(xs)
√
n(n− 1)

2
δ|j−i|,2

)(
dz0(xs)

dxs

)2

−

(
n
√
2n

4
√
ω(xs)

δ|j−i|,1 +

√
2n(n− 1)(n− 2)

4
√
ω(xs)

δ|j−i|,3

)
dz0(xs)

dxs

dω(xs)

dxs
,
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where n = max(i, j) − 1. The effective potentials (10) are calculated by
integrating the difference V (xf , xs)− V0(xf , xs)

Vij(xs) =

xmax
f (xs)∫

xmin
f (xs)

Φi (xf ;xs) (V (xf , xs)− V0 (xf , xs))Φj(xf ;xs)dxf . (15)

During the simulation, the adiabatic parameters V0(xs), ω(xs), z0(xs) of
the etalon potential (13) are calculated from the conditions

min
V0(xs),ω2(xs),z0(xs)

xmax
f (xs)∫

xmin
f (xs)

(V (xf , xs)− V0 (xf , xs))2dxf . (16)

For potential (12) from condition (16), we have

ω(xs) =
√
2m

√
960

7
+ 240xs + 2400x2s , z0(xs) = 0 ,

at xs = a20 , xf = a22 ,

ω(xs) =
√
2m

√
960

7
+ 2400x2s , z0(xs) = −

7
(
20x2s − 1

)
80 (35x2s + 2)

,

at xs = a22 , xf = a20 .

We perform calculations for these parameters in the case of (xf , xs) =
(a22, a20) as well as (xf , xs) = (a20, a22). The results coincide with cal-
culations of previous sections with 10 significant digits.

4. Conclusion

We proposed a construction of parametric surface functions in an an-
alytical form as eigenfunctions of the etalon equation (13) that provides a
solution of the 2D BPV with given accuracy and reduce computer resources
with respect to the conventional basis numerically calculated by the FEM.
One can construct the parametric functions using a different type of etalon
potentials, for example, two-center problem with harmonic oscillator poten-
tials [12]. This approach is generalized for the BVP in multidimensional
domain using, for example, the multistep Kantorovich method [7]. As fol-
lows from the analysis of the benchmark calculations, the Kantorovich and
Galerkin method, using expansion of solution over the symmetrized basis
of K-harmonics [13], can be also applied for solving N -dimensional BVPs
describing rotational-vibrational nuclear models.
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