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CDT AND THE BIG BANG∗
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We describe a CDT-like model where breaking of W (3) symmetry will
lead to the emergence of time and, subsequently, of space. Surprisingly,
the simplest such models which lead to higher dimensional spacetimes are
based on the four “magical” Jordan algebras of 3×3 Hermitian matrices with
real, complex, quaternion and octonion entries, respectively. The simplest
symmetry breaking leads to universes with spacetime dimensions 3, 4, 6,
and 10.
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1. Introduction

String field theory is notoriously complicated, but the so-called non-
critical string field theory [1–3] is a lot simpler. An even simpler version
is the so-called CDT string field theory [4]. The starting point is the con-
tinuum limit of two-dimensional causal dynamical triangulations (CDT) [5],
a limit which is two-dimensional Hořava–Lifshitz quantum gravity if space-
time topology is trivial [6]. However, here we are interested in a generalized
CDT where spacetime topology can change [7]. This theory describes the
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dynamics of topology changes of two-dimensional spacetime. One has cre-
ation and annihilation operators, Ψ †(L) and Ψ(L), for spatial universes of
length L and the Hamiltonian involves terms like

Ψ †(L1)Ψ
†(L2)Ψ(L1 + L2) , Ψ †(L1 + L2)Ψ(L2)Ψ(L1) , (1)

which describe the splitting of a spatial universe in two, and the merging of
two spatial universes into one such universe.

Although string field theory deals with splitting and merging of spatial
universes, at the end of the day it tells us surprisingly little about the creation
of a universe from “nothing”, i.e. Big Bang. This led us to look for some
general symmetry, the breaking of which could result in a Big Bang scenario.
It is possible to derive the CDT string field Hamiltonian by starting out with
a W (3)-symmetric theory which a priori has no spacetime interpretation.
However, when the W (3) symmetry is broken, “time” and correspondingly
the (CDT) Hamiltonian will “emerge”, but in such a way that also space
can be created from “nothing”. Below, we will shortly describe how this is
realized. However, in this way, one only obtains a one-dimensional space.
We will then argue that this one-dimensional scenario can be generalized to
2, 3, 5 and 9 spatial dimensions if one considers W (3) algebras with intrinsic
symmetries related to one of the so-called “magical” Jordan algebras.

2. Why W (3)?

When one discusses splitting and joining of strings, one encounters terms
like (1). In the case of ordinary non-critical string field theory, this leads
to a special W (3) algebra which ensures that the partition function is a
τ -function [8]. In the case of CDT string field theory, we now promote the
W (3) symmetry to the starting principle.

The formal definition of W (3) operators in terms of operators αn satis-
fying

[αm, αn] = mδm+n0 (2)

is the following:

W (3)
n = 1

3

∑
k,l,m :αkαlαm : δk+l+m,n . (3)

The normal ordering :(·): refers to the αn operators (αn to the left of αm for
n > m. This ordering is opposite to the one conventionally used. See [3] for
the motivation for such a choice.).

We then define the “absolute vacuum” |0〉 by the following condition:

αn|0〉 = 0 , n < 0 , (4)
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and the so-called W -Hamiltonian ĤW by

ĤW := −W (3)
−2 = −1

3

∑
k,l,m :αkαlαm : δk+l+m,−2 . (5)

Note that ĤW does not contain any coupling constants.
It was shown in [9] that by introducing a coherent state, which is an

eigenstate of α−1 and α−3 and which we denoted the “physical” vacuum
state |vac〉, ĤW was closely related to the CDT string field Hamiltonian Ĥ.
We thus defined

|vac〉 ∝ eλ1α1+λ3α3 |0〉 , (6)

and we have

α−1|vac〉 = λ1|vac〉, α−3|vac〉 = 3λ3|vac〉 . (7)

The main point is the following: because 〈vac|αn|vac〉 is different from zero
for n = −1 and n = −3, ĤW will now contain terms only involving two
operators αl. These terms can act like quadratic terms in Ĥ. At the same
time, the cubic terms left in ĤW will act like the interaction terms in Ĥ,
resulting in joining and splitting of universes. Finally, the expectation values
of α−1 and α−3 determine the coupling constants of Ĥ. More precisely, one
has [9]

ĤW ∝ Ĥ + c4φ
†
4 + c2φ

†
2 , (8)

where Ĥ is the CDT string field Hamiltonian. c4 and c2 are constants. The
creation operators φ†n are the αn, n > 0, while annihilation operators φn
are related to αn, n < 0, except that φ1 and φ3 are shifted by eigenvalues
given in Eq. (7), such that φn|vac〉 = 0. Ĥ is normal ordered such that
Ĥ|vac〉 = 0.

By breaking the W (3) symmetry, one can thus obtain CDT string field
theory except for one important point: the vacuum is not stable. The terms
c4φ
†
4 + c2φ

†
2 cause universes of infinitesimal length to be created and the

non-interacting part of Ĥ, which explicitly can be written as

Ĥ0 = −
∞∑
l=1

φ†l+1lφl + µ

∞∑
l=2

φ†l−1lφl , (9)

might expand such an infinitesimal length space to macroscopic size1.
1 The relation between the operators φl, φ

†
l and the operators Ψ(L), Ψ†(L) which

annihilate and create spatial universes of macroscopic length L is as follows

Ψ†(L) =
∞∑
l=0

Ll

l!
φ†l . (10)
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3. Generalization to higher dimensions

Above the spatial universe created from nothing was one-dimensional.
We can introduce higher dimensional spaces by attaching intrinsic “flavors”
to different spatial directions. In addition, we want to be able to rotate these
flavors into each other. This leads to so-called extendedW (3) algebras, which
again are related to Jordan algebras [10]. Surprisingly, it turns out that
only the four so-called magical Jordan algebras allow us to make symmetry
breakings which lead to CDT-like Hamiltonians of the kind considered above.

We find for the W (3) Hamiltonian the expression

ĤW := −W (3)
−2 = −1

3

∑
k,l,m

∑
a,b,c dabc :α

(a)
k α

(b)
l α

(c)
m : δk+l+m,−2 , (11)

where dabc are the structure constants for the Jordan algebras. The magi-
cal Jordan algebras are Hermitean 3 × 3 matrices H3(F), where F denotes
R, C, H and O (the real numbers, the complex number, the quaternions
and the octonions), and the structure constants are related to the stan-
dard Gell-Mann dabc for H3(C) in a simple way. Again, the model only
allows a spacetime interpretation after choosing a specific coherent state.
Here, we discuss only the simplest, interesting choice, namely breaking in
the 8-direction (in the notation of Gell-Mann). Instead of (6) and (7), we
can choose

|vac〉8 ∝ eλ
(8)
1 α

(8)
1 +λ

(8)
3 α

(8)
3 |0〉 , (12)

and we have

α
(8)
−1|vac〉8 = λ

(8)
1 |vac〉8 , α

(8)
−3|vac〉8 = 3λ

(8)
3 |vac〉8 . (13)

Again, one obtains an unstable vacuum. The kinetic, non-interacting
part of the Hamiltonian (the part corresponding to (9)) has coefficients dab8
and, in fact, only coefficients daa8 are different from zero. One can argue [11]
that in order for the non-interacting part of the Hamiltonian to allow a
universe to expand from infinitesimal size to macropscopic size, one has to
demand that the coefficients daa8 > 0. When we then look at the four
magical algebras, we have for H3(R) two indices a, where daa8 = 1/

√
3. For

H3(C), we have three indices a, where daa8 = 1/
√
3. For H3(H), we have

five indices a, where daa8 = 1/
√
3 and, finally, for H3(O), we have nine

indices a, where daa8 = 1/
√
3. The rest of the daa8 are non-positive. The

symmetry breaking corresponds to breaking the automorphism group of the
W (3) algebras from SO(3) to SO(2), from SU(3) to SO(3), from USp(6) to
SO(5) and, finally, from F4 to SO(9). The extended spacetime dimensions
will be (including the time) 2 + 1, 3 + 1, 5 + 1 and 9 + 1 which are the
dimensions of the classical superstrings. It is an interesting question if one
can consider the flavor indices a of space as reflecting matter fields partly
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integrated out. It opens for the exciting possibility that the matter content
is unique.
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