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Causal Dynamical Triangulations (CDT) is a lattice approach to quan-
tum gravity. CDT has rich phase structure, including a semiclassical phase
consistent with Einstein’s general relativity. Some of the observed phase
transitions are second (or higher) order which opens a possibility of investi-
gating the ultraviolet continuum limit. Recently, a new phase with intrigu-
ing geometric properties has been discovered and the new phase transition
is also second (or higher) order.
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1. Introduction

Quantum field theory (QFT) techniques provide powerful tools in de-
scribing three out of four fundamental interactions. The key problem in
applying these methods to quantize gravity is that QFT based on Einstein’s
general relativity (GR) is perturbatively nonrenormalizable [1]. However,
following Weinberg’s asymptotic safety conjecture [2], it is possible that
in the space of gravitational couplings, there exist non-Gaussian ultraviolet
(UV) fixed point(s) at which nonperturbative QFT techniques could be used
to define a quantum theory of gravity valid for any energy scale1. Among
such techniques, lattice methods play an increasingly important role. A good
test of any lattice approach is its ability to reproduce GR in the infrared
limit and also the existence of second (or higher) order phase transitions

∗ Talk presented at the 3rd Conference of the Polish Society on Relativity, Kraków,
Poland, September 25–29, 2016.

1 There are known examples of perturbatively nonrenormalizable but asymptotically
safe QFTs and evidence is growing that it is also the case for gravity [3].
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associated with the perspective UV fixed point(s)2. Therefore, a study of
the phase structure and the order of phase transitions constitute first steps
in the quest for the continuum theory of quantum gravity.

2. Causal Dynamical Triangulations

Causal Dynamical Triangulations (CDT) is a lattice model based on the
path integral quantization applied to GR. CDT gives a precise meaning to
a (formal) gravitational path integral

ZGR =

∫
DM[g]eiSHE[g] → ZCDT =

∑
T
eiSR[T ] , (1)

approximating continuous geometries (described by all physically distinct
metric tensors g) by lattices constructed from two types of identical four-
dimensional simplicial blocks glued together to form triangulations T . The
key assumption of CDT is an introduction of causal structure by foliating
spacetime into Cauchy hyper-surfaces Σ of constant global proper time T .
Topologically, a triangulation T is Σ×T , and one requires that the topology
of each spatial slice Σ is fixed. Each spatial layer Σ at integer (lattice) time t
is by definition constructed from equilateral tetrahedra. The four-simplices
interpolate between consecutive spatial layers of integer t in such a way that
also all intermediate Cauchy layers between t and t + 1 have the requested
fixed spatial topology. This can be done by using just two types of four-
simplices called the (4, 1) simplex and the (3, 2) simplex3. It is assumed
that the interior of each four-simplex is a flat Minkowski spacetime and
local curvature is defined by the way the simplices are glued together. In
Eq. (1), SR is the discretized Hilbert–Einstein action SHE obtained following
Regge’s method for describing piecewise linear geometries [4]

SR = − (κ0 + 6∆)N0 + κ4
(
N(4,1) +N(3,2)

)
+∆ N(4,1) , (2)

where N(4,1), N(3,2) and N0 denote the total number of (4, 1) simplices,
(3, 2) simplices and vertices, respectively, while κ0, ∆ and κ4 are three bare
coupling constants. They are functions of the Newton’s constant, the cos-
mological constant and the asymmetry α between lengths of time-like and
space-like links in the lattice (a2t = −α a2s).

In order to study the regularised path integral, one is forced to use Monte
Carlo techniques. This can be done by applying the Wick rotation from
positive to negative α values which changes time-like links into space-like

2 Infinite correlation lengths characteristic of such phase transitions make it, in prin-
ciple, possible to decrease lattice spacing to zero, i.e. to investigate the continuum
limit.

3 The numbers in parentheses denote vertices lying in t and t± 1, respectively.
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links, i.e. changes real (Lorentzian) time t(L) into imaginary (Euclidean)
time t(E) (t(L) → t(E) = it(L)), and also changes Lorentzian action into
Euclidean action (S(L)

R → S
(E)
R = iS

(L)
R ). Accordingly, the path integral

ZCDT (1) becomes a partition function which can be studied numerically.

3. Phase structure of 4-dim CDT

All results presented herein were obtained for a particular choice of fixed
spatial topology Σ = S3 (3-sphere)4. Historically, three phases of various
spacetime geometry called A, B and C were discovered (see Fig. 1). Phase A
(time-uncorrelated geometry) and B (time-collapsed geometry) do not have
clear physical interpretation. The most interesting one is phase C, which
is separated from phase A by a 1st order transition and from phase B by
a 2nd (or higher) order transition [5]. The basic feature of phase C (now
CdS) is the emergence of large scale four-dimensional geometry [6] consistent
with semiclassical (Euclidean) de Sitter universe [7]. It was also shown that
in this phase, quantum fluctuations of spatial volume are governed by the
minisuperspace reduction of the Hilbert–Einstein action [7, 8].
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Fig. 1. Phase structure of 4-dim CDT in the (κ0, ∆) bare couplings plane. κ4 is
fine-tuned to critical value consistent with infinite volume limit.

The key tool in the analysis of the effective action of CDT was the
transfer matrix (TM) parametrised by a spatial volume observable, i.e. the
transition amplitude from spatial volume n at (lattice) time t to spatial
volume m at time t + 1. Deep inside phase C (CdS region in Fig. 1), the

4 Preliminary studies of CDT with toroidal spatial topology confirm the existence of
similar phase structure.
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TM is well-parametrised by [9]

〈n|MCdS
|m〉 = exp

[
− 1

Γ

(n−m)2

(n+m)

]
︸ ︷︷ ︸

kinetic part

exp

[
−µ
(
n+m

2

)1/3

+ λ

(
n+m

2

)]
︸ ︷︷ ︸

potential part

,

(3)
where Γ , µ and λ are parameters related to the Newton constant, the size
of the CDT universe and the cosmological constant, respectively. However,
it was observed that in some region of the parameter space close to phase A
(Cb region in Fig. 1), the TM kinetic part bifurcates, such that [10]

〈n|MCb
|m〉 =

[
exp

(
− 1

Γ

(
(n−m)− [c0(n+m− sb)]+

)2
n+m

)

+ exp

(
− 1

Γ

(
(n−m) + [c0(n+m− sb)]+

)2
n+m

)]
× potential part[n+m] ,

(4)

which led to a discovery of a new phase transition associated with the pa-
rameters sb →∞ and c0 → 0, where TM (4) transforms into TM (3).

The newly discovered bifurcation phase Cb has many intriguing geomet-
ric properties, including very large (potentially infinite) Hausdorff dimension
and also spectral dimension becoming much larger than 4 for long diffu-
sion times. The CdS–Cb phase transition is related to breaking of spatial
homogeneity of phase CdS by the appearance of compact spatial volume
clusters concentrated around “singular” vertices with macroscopically large
coordination number present every second time layer inside phase Cb [11].
The volume clusters have (topologically) spherical boundaries and thus can
technically be called “black balls”. The “black balls” around singular ver-
tices in time t and t+ 2 are causally connected through those intermediate
4-simplices which also share one of the “singular” vertices. As a result, one
observes a marked-out four-dimensional geometric structure related to evo-
lution of time-correlated “black ball” volume condensations. The geometry
of phase Cb requires further studies, but a working hypothesis is that what
is observed might be actually a quantum black hole.

A key question remains about the order of the recently discovered bifur-
cation transition. In Ref. [12], an order parameter related to the appearance
of high order vertices was proposed,

OP2 =
1
2 [|Omax (t0)−Omax (t0 + 1)|+ |Omax (t0)−Omax (t0 − 1)|] , (5)

where Omax(t0) is the highest coordination number among all vertices and
Omax(t0± 1) is the highest coordination number of a vertex observed in the
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neighbouring time slice. The position of the CdS–Cb transition is signalled
by a peak in susceptibility χOP2 = 〈OP2〉 − 〈OP2〉2 and it moves in the
CDT bare couplings space (κ0, ∆) when lattice volume N(4,1) is changed.
The volume dependence of critical ∆ (for κ0 = 2.2 fixed) can be fitted with
the following function:

∆crit
(
N(4,1)

)
= ∆crit(∞)− α N −1/γ

(4,1) , (6)

and measured value of the critical exponent γ = 2.71±0.34 strongly supports
the conjecture that the bifurcation transition is a 2nd (or higher) order phase
transition5.

4. Summary and conclusions

We have briefly presented the recently updated 4-dim CDT phase dia-
gram, including the semiclassical phase CdS which seems to be CDT reali-
sation of the correspondence principle, and the newly discovered bifurcation
phase Cb with very nontrivial geometric properties. We have provided evi-
dence that the CdS–Cb phase transition, related to breaking of homogeneity
of semiclassical phase, is a 2nd (or higher) order phase transition which may
in principle allow one to approach the perspective UV fixed point of quantum
gravity [13].

The author wishes to acknowledge the support of the grant DEC-2012/06/
A/ST2/00389 from the National Science Centre (NCN), Poland. The results
described herein were obtained in close collaboration with J. Jurkiewicz,
J. Ambjørn, R. Loll, A. Görlich and D.N. Coumbe.
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