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Phase spaces with nontrivial geometry appear in different approaches to
quantum gravity and can also play a role in e.g. condensed matter physics.
However, so far, such phase spaces have only been considered for particles
or strings. We propose an extension of the usual field theories to the frame-
work of fields with nonlinear phase space of field values, which generally
means nontrivial topology or geometry. In order to examine this idea, we
construct a prototype scalar field with the spherical phase space and then
study its quantized version with the help of perturbative methods. As a
result, we obtain a variety of predictions that are known from the quan-
tum gravity research, including algebra deformations, generalization of the
uncertainty relation and shifting of the vacuum energy.
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1. Introduction

Born [1] was the first to suggest that, in the quantum theory of gravity,
curved geometry of spacetime should be accompanied by momentum space
that is similarly nontrivial. Indeed, curved momentum spaces or, in general,
phase spaces with nontrivial geometry have been considered in different mod-
els of quantum gravity [2–5] and this often leads to specific phenomenological
predictions. The most rigorous approach is formulated in the language of
quantum (Hopf) algebras. However, the discussed phase spaces are usually
understood as belonging to some real or test particles. In [6], we proposed to
generalize this notion to the domain of field theory, so that the phase space
of values of a given field is a nontrivial manifold, which becomes a linear
(i.e. affine) space only in a certain limit. Similar constructions were already
known in the context of string theory, where strings are described by non-
linear sigma models, which (in the Tseytlin formulation) can be interpreted
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as having curved phase spaces [7]. Another motivation comes from the prin-
ciple of finiteness of physical quantities, which has been the idea behind the
Born–Infeld theory [8], where field values are constrained by its dynamics.
In our case, such a constraint can be imposed a priori by choosing a compact
phase space.

2. Toy model with the spherical phase space

As a basic example [6], we take a (massless) scalar field on R3,1. Its
classical Hamiltonian in the Fourier representation has the form of

H = 1
2

∑
k

(
π2k + k2φ2k

)
, k ≡

√
k · k . (1)

The phase space of each mode k is Γk := T ∗(R) = R2 3 (φk, πk), with the
Poisson bracket {φk, πk} = 1 and the total field phase space Γ =

∏
k Γk.

Let us now assume that ∀k : Γk = S2 (a sphere). On S2, covered by
angular coordinates ϕ, θ, the natural symplectic form is given by the area
form ω = J sin θ dϕ ∧ dθ,

∫
S2 ω = 4πJ , with the nonlinearity scale J . We

accordingly parametrize field variables φk, πk in terms of ϕ, θ as

R−1φk = ϕ− π ∈ [−π, π) , RJ−1πk = π
2 − θ ∈

[
−π

2 ,
π
2

]
, (2)

where R denotes a dimensionful constant and (for simplicity) we choose J to
be k-independent. The symplectic form becomes ω = cos(RJ πk) dπk ∧ dφk
and the corresponding Poisson bracket is

{φk, πk} = sec
(
RJ−1πk

)
. (3)

The same construction can be made [9] for points of R3,1 instead of modes.
Since the variables φk, πk in (2) are not everywhere well-defined, it is

often convenient to switch to the spin-like coordinates

J(x) := J sin θ cosϕ , J(y) := J sin θ sinϕ , J(z) := J cos θ (4)

satisfying the relation J2
(x) + J2

(y) + J2
(z) = J2, where φ, θ are expressed

through formulae (2). Calculating brackets (3) for Jis, one verifies that they
span the usual su(2) Lie algebra {Ji, Jj} = εijkJ

k.
Similarly, in order to find a Hamiltonian which is globally well-defined,

has the usual minimum (φk, πk) = (0, 0), and correct linearized limit, we
may apply the formal analogy with a spin J in a constant magnetic field B
and postulate the Hamiltonian of the form of (analogous to H ∼ B · J)

H =
∑
k

Hk , Hk := kJ(x) = −Jk cos
πk√
Jk

cos
φk√
J/k

, (5)
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where we also fixed R =
√
J/k. The ordinary Hamiltonian (1), up to

an energy spectrum shift by −Jk, is recovered in the limit of J → ∞.
Calculating the brackets ḟ = {f,Hk}, f = φk, πk we obtain the Hamilton
equations

φ̇k =
√
Jk tan

πk√
Jk

cos
φk√
J/k

, π̇k = −
√
Jk k sin

φk√
J/k

, (6)

which describe phase space trajectories1 with parameters C, t0 ∈ R

φk(t) =
√
J/k arcsin

(
C cos(k(t− t0))

/√
J/k − C2 sin2(k(t− t0))

)
,

πk(t) = −
√
Jk arcsin

(
C
√
k/J sin(k(t− t0))

)
. (7)

Each solution (7) outlines a circle with the center at φk, πk = 0 but for the
great circle (i.e. when C = ±

√
J/k), they become singular and therefore

cover only half of the sphere. In the limit of J →∞, we recover the classical
expressions φk(t) = C cos(k(t− t0)), πk(t) = Ck sin(k(t− t0)).

3. Selected results from the quantized model

Inspired by the polymer quantization approach [5], we assume [6] that the
quantum version of bracket (3) is given by the su(2) commutator [Ĵi, Ĵj ] =

i} εijkĴk. Consequently, our phase space cannot be globally decomposed into
field values and momenta and to represent it, one has to use quasiprobability
distributions, such as the Wigner function, instead of usual wave functions.
Nevertheless, for quantum states supported on field values φk � π

2

√
J/k,

πk � π
2

√
Jk, we can expand Ĵis in terms of φ̂k, π̂k and derive the deformed

commutation relation[
φ̂k, π̂k

]
≈ i}

(
Î− k

2J
φ̂2k −

1

2Jk
π̂2k

)
. (8)

It naturally corresponds to the generalized uncertainty principle

∆φ̂k∆π̂k ≥
}
2

(
1− k

2J

(
∆φ̂k

)2
− 1

2Jk
(∆π̂k)2

)
(9)

(if the mean values 〈φ̂k〉, 〈π̂k〉 = 0), which may be compared with e.g. [5].

1 The form of solutions (7) was found during the conference by I. Białynicki-Birula,
whom we thank for his interest.
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Furthermore, keeping the expansion to the order of J−1, we can express
φ̂k and π̂k in terms of the creation and annihilation operators â†k, âk as

φ̂k =

√
}J

(} + 2J)k

(
â†k + âk

)
, π̂k = i

√
}Jk

} + 2J

(
â†k − âk

)
. (10)

â†k, âk then generate a Q-deformed oscillator algebra âkâ
†
k − Q â

†
kâk = Î,

where the deformation parameter Q ≡ (1− }
2J )/(1 + }

2J ) = 1− }
J +O(J−2).

Subsequently, the quantized Hamiltonian (5), i.e. Ĥk := kĴ(x) with the
symmetric ordering of φ̂k and π̂k, can be perturbatively expanded in J−1.
As a result, we find the energy eigenvalues (with n ∈ N0)

En = −Jk + }k
(
n+ 1

2

)
− 1

4J
−1}2k

(
3n2 + 3n+ 1

)
+O

(
J−2

)
(11)

and the corresponding eigenstates

|n〉 =
∣∣∣n(0)〉+ cn+4

∣∣∣(n+ 4)(0)
〉

+ cn−4

∣∣∣(n− 4)(0)
〉 ∣∣

n≥4 +O
(
J−2

)
, (12)

where the index (0) denotes the zeroth order of the expansion, while the co-
efficients cn+4 ≡ − }

96J

√
(n+ 4)!/n!, cn−4 ≡ }

96J

√
n!/(n− 4)!. In particular,

the standard vacuum energy E0 = 1
2}k is shifted by −Jk − 1

4J }
2k.

The properties of the toy model discussed here and in [6] show the po-
tential usefulness of our framework in the context of quantum gravity. It
can also be tested in cosmology [10].
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