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We discuss relativistic particle and field theoretic models of an inter-
action with an environment. We show that in a Markovian approximation
such models lead to a diffusion. We interpret dark energy as an environ-
ment for the dark matter.
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1. Introduction

The successful ΛCDM model determines the global evolution of the Uni-
verse. In order to go into its more detailed structure, we must construct
particular models of the energy-momentum (cosmological fluids, inflaton
fields). Simple models involve non-interacting components of the energy-
momentum. If we wish to explain a relation between the components and
their evolution in time, we need models with a non-trivial dynamics. We do
not know details of the interaction but in a system of an infinite number of
particles, a Markovian approximation may be sufficient. We discuss here a
model where the unknown components of the cosmological fluid (dark matter
and dark energy) are treated in the scheme of a system and an environment.
We think that such a scheme is in a sense unique and has some testable con-
sequences: a relation between the temperature and the interaction coupling
constant.

2. Particle environment

In the non-relativistic mechanics (classical as well as quantum), the in-
teraction with an environment consisting of an infinite system of particles
and its Markovian approximation have been well-studied. The effect of de-
coherence of such an interaction shows that even a weak interaction with an
infinite system may result in a profound change of the behavior of complex
systems. An interaction of a relativistic system with an environment has not
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been so well-studied yet. There is the well-known problem of a relativistic
description of a many-particle system. However, instead of an introduction
of an environment of many particles, we may consider an electromagnetic
field F produced by an environment of such (charged) particles. Then, the
equations of motion read

dxµ

dτ
= pµ , (2.1)

dpµ

dτ
+ Γµναp

νpα = Fµνpν , (2.2)

where τ is the proper time and Γµνα are the Christoffel symbols. In the
Liouville description, we write an equation for the probability distribution Ω
in the phase space (we eliminate the proper time τ in favor of the coordinate
time t)

∂tΩ = −
(
p0
)−1 (

pk∂xkΩ − Γ kναpνpα∂kΩ + F kνpν∂k

)
Ω ≡ (X+Y )Ω , (2.3)

where ∂k is a derivative over momenta, ∂xk a derivative over spatial coordi-
nates and

Y =
(
p0
)−1

F kνpν∂k . (2.4)
If F = 0, then the solution of the Liouville equation can be expressed as

Ωt(x,p) =

(
exp

( t∫
dsXs

)
Ω

)
(x,p) = Ω(xt, pt) , (2.5)

where (xt, pt) is the geodesic and the exp can be treated as a time ordered
exponential of the vector field X. In the presence of the electromagnetic
field, we may write

Ωt(x,p) =

(
exp

( t∫
dsXs

)
exp

( t∫
dsY X

s

)
Ω

)
(x,p) , (2.6)

where

Y X
t = exp

(
−

t∫
dsXs

)
Yt exp

( t∫
dsXs

)
. (2.7)

We assume that the electromagnetic field F is produced by an infinite system
of randomly moving relativistic particles. In such a case, the field F is also
random. If the randomness of F is the result of a sum of small random
perturbations resulting from a large number of particles, then we may assume
on the basis of the central limit theorem that the random variables are
Gaussian. For a Gaussian F and any operator M linear in F , we may
write an expansion in powers ofM (we assumed that 〈F 〉 = 0) 〈expM〉 =
exp(12〈M

2〉+ . . .). Under general assumptions, we have calculated [1, 2]
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〈( t∫
0

Y X
s ds

)2〉
'
(
p0
)−1

∆H
m , (2.8)

where ∆H
m is the Laplace–Beltrami operator defined as follows: in the space-

time metric

ds2 = dt2 − gjkdxjdxk ≡ dt2 − a2hjkdxjdxk (2.9)

(where for later purposes, the time dependence is contained in the scale
factor a), we define the metric on the mass-shell

Gjk = gjk +m−2pjpk . (2.10)

Then
∆m
H =

1√
G
∂jG

jk
√
G∂k . (2.11)

We assume that the time evolution consists of “strokes” at subsequent time
intervals ∆t by the random electromagnetic field (Markovian approxima-
tion). As a result, the random Liouville equation is approximated by the
diffusion equation generated by ∆m

H . By means of the phase-space distri-
bution Ω, we can define the energy-momentum tensor T̃µν which is not
conserved. It must be supplemented either by the energy-momentum of
the random electromagnetic field F or by the energy-momentum TµνΛ of the
particles which are the source of the electromagnetic field.

3. An environment of quantum fields

In this section, we consider an environment of an infinite number of scalar
fields χb. Let the scalar field φ with a potential V be linearly coupled to χ
and satisfy equations of motion

g−
1
2∂µg

1
2∂µφ+m2φ+ V ′(φ) = −

∑
b

λbχ
b , (3.1)

g−
1
2∂µg

1
2∂µχb +m2

bχ
b = −λbφ , (3.2)

where gµν is the metric tensor and g= |det[gµν ]|. In general, we need Green’s
function of the operator on the l.h.s. of Eq. (3.2) in order to express χ by φ.
We restrict ourselves to a solution for a fixed (“frozen”) a of Eq. (2.9). Then,
the metric g can be treated as time-independent. We solve Eq. (3.2) for
a time-independent metric and insert the solution in the r.h.s. of Eq. (3.1)
obtaining
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∑
b

λb
(
cos(Kbt)χb0 +K−1b sin(Kbt)πb0

)
−
∑
b

λ2b

t∫
0

K−1b sin(Kb(t− s))φ ds ,

(3.3)
where Kb = −g−

1
2∂jg

jkg
1
2∂k + m2

b . In Eq. (3.3), the friction R is defined
as the operator in the term Rφ linear in φ and the rest is interpreted as
the noise W . The noise depends on the probability distribution of the
initial values χb and ∂tχ

b = πb (which can be chosen as quantum fields
at finite temperature T ). Then, (in the classical limit) 〈χb0χb0〉 = TK−2b
and 〈πb0πb0〉 = T . These correlations determine correlations (3.5) for the
noise W . The Markovian approximation results from a neglect of spatial
dependence of K−2b (x,x′) ' m−2b δ(x − x′) and the assumption λ2b ' γm2

b .
The g−

1
2 = a−3 term (where a is the scale expansion factor of Eq. (2.9))

follows from the dependence of the temperature T = a−3wT0 on the scale
factor a and on the equation of state parameter w which for a kinetic energy
dominance gives w = 1 [3]. We obtain from Eqs. (3.1)–(3.2) [3]

g−
1
2∂µg

µνg
1
2∂νφ+m2φ+ V ′(φ) = γW , (3.4)

where 〈
W (x)W

(
x′
)〉

= g−
1
2 δ
(
x, x′

)
(3.5)

(with a four-dimensional δ-function on the r.h.s. of Eq. (3.5)). The diffusing
particles of Sec. 2 and diffusing quantum fields of this section (which can
create particles) are considered as models of the dark matter. The energy-
momentum T̃µν of the dark matter is not conserved. We must supplement
it by an energy-momentum tensor TµνΛ of the environment so that the to-
tal energy momentum T̃µν + TµνΛ is conserved. The conservation law can
determine TµνΛ and the dynamical relation between the two components.
In a general time-dependent metric, there will be no static (equilibrium)
distribution of observables. We have shown [4] that there are probability
distributions of the particle model of Sec. 2 and the field theoretic model
of this section which can be interpreted as equilibrium distributions with
a time-dependent temperature. The dependence of the temperature on the
diffusion constant results from a fluctuation–dissipation theorem [3,5]. This
relation could, in principle, be checked in astronomical observations as the
temperature and the rate of the energy dissipation are measurable.
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