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In this letter, we discuss a comparison between two scalar field models
that have been recently introduced in the context of loop quantum gravity.
The scalar fields play the role of so-called reference fields that allow to
construct Dirac observables for general relativity and introduce a notion of
physical spatial and time coordinates respectively. One of the models uses
Dirac quantization, the other one reduced phase space quantization. We
want to compare the physical sector of both quantum theories and discuss
their similarities and differences with a particular focus on their quantum
dynamics.
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1. Introduction

The canonical approach of loop quantum gravity (LQG) aims to formu-
late a canonical quantization of general relativity (GR). For any canonical
quantization of a given classical field theory, we have to make some choices
in order to obtain the final quantum theory. The first necessary choice is the
classical theory to start with and this is GR in its Hamiltonian form. Instead
of the ADM formulation, we consider GR described in terms of the so-called
Ashtekar variables which are a Lie(SU(2))-algebra valued one form as the
configuration variable A and a Lie(SU(2))-algebra valued vector density E
for the conjugate momenta. This brings an additional SU(2)-gauge freedom
into GR that can be understood as an extension of the usual ADM phase
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space, which can be recovered if the Gauss constraint is satisfied. Thus, the
set of constraints the theory has are the spatial diffeomorphism constraint,
the Hamiltonian constraint, known from the ADM framework, as well as the
Gauss constraint. In order to go over to the quantum theory, one consid-
ers the so-called holonomy-flux algebra that can be obtained by a specific
smearing of the connection and momentum variables. This is the first main
assumption of LQG because it fixes the classical variables the quantum the-
ory will be based on. The second main assumption determining the final
form of the quantum theory is the choice of a representation that allows
to represent the classical phase space variables as linear operators on some
Hilbert space. Here, we choose the Ashtekar–Lewandowski (AS) represen-
tation that is widely used in the context of LQG, see, for instance, [6] for
more details. Next to the two main assumptions for a quantum field theory
discussed above for GR as our classical starting point, we have a third main
assumption that also determines the properties of the quantum theory. This
is the choice how we treat the constraints that occur in the Hamiltonian for-
mulation of GR. To obtain the corresponding quantum theory that encodes
this set of first class constraints, we have two options: Either we can use
Dirac quantization or we can use reduced phase space quantization. Both
methods will be briefly summarized in the next section. Both routes have
been followed and lead to several recent so-called deparametrized models for
loop quantum gravity, see, for instance, [1–5]. In this letter, we want to
compare the models obtained in [3] and [5].

2. Dirac quantization and reduced phase space quantization

The Dirac quantization and reduced phase space quantization approaches
differ in the way how one handles the constraints when going over from the
classical theory to the corresponding quantum theory. In the case of Dirac
quantization, one quantizes the entire kinematical phase space. What one
obtains after quantization is the so-called kinematical Hilbert space Hkin

that involves besides the physical degrees of freedom (dof) also still gauge
dof. At the classical level, the physical dof can be obtained by reducing with
respect to the (classical) constraints which we denote by the set {cI}. In
the Dirac approach, this is carried over to the quantum theory where one
implements the classical constraints as operators on Hkin. One requires that
physical states are annihilated by all constraint operators, that is ĉIψphys = 0
for all I. Once the set of physical states has been determined, one has to
define an inner product on this set leading to the physical Hilbert space
Hphys that one is finally interested in. On the other hand, if one follows
reduced phase space quantization, the constraints are already reduced at
the classical level. By this, the kinematical algebra is replaced by the al-
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gebra of observables that encodes the physical dof only. Then, one looks
for representations of the observable algebra providing a direct access to the
physical Hilbert space Hphys. Since the constraints have been reduced at
the classical level, there is no dynamics described by quantum constraint
equations in this approach. However, the dynamics of the observables on
the reduced phase space is generated by a so-called physical Hamiltonian,
that, in contrast to the constraints, does not vanish on the physical sector
of the theory. Both procedures have their advantages and disadvantages.
In the Dirac approach, solving the constraints corresponds to finding so-
lutions of possibly complicated operator equations, whereas in the reduced
quantization, in general, the algebra of observables can have a much more
complicated structure than the associated kinematical one. Hence, it can be
hard to find representations thereof. Moreover, for a given theory, one does
not have to strictly follow one or the other approach, but can also combine
the two by solving a part of the constraints at the classical level and the
remaining ones at the quantum level. For LQG, both routes were taken and
the reduced quantization requires to construct the algebra of observables
which will be briefly discussed in the next subsection.

2.1. Dirac observables for general relativity

As mentioned above, for GR formulated in terms of Ashtekar variables
(A,E), we have to consider the Hamiltonian, spatial diffeomorphism and
Gauss constraints denoted by c, ca and gj , respectively, where a = 1, 2, 3
denotes spatial indices and j = 1, 2, 3 are Lie algebra indices. In all models
discussed in this letter, the Gauss constraint is solved at the quantum level
because it can be easily solved using standard techniques from the lattice
gauge theory. Hence, following the reduced quantization approach, we need
to construct observables with respect to the Hamiltonian and spatial diffeo-
morphism constraint. These Dirac observables O are quantities on phase
space that satisfy

{O, ca} = 0 and {O, c} = 0 .

The construction of these observables can be done in the framework of the
so-called relational formalism [7–9] where we introduce reference fields that
are used to define physical time and spatial coordinates and with respect to
which the dynamics of the remaining dof is described. We choose one refer-
ence field for each constraint denoted by T := {T I} with I = 0, 1, 2, 3. As
shown in [8], there exists a map that sends each phase space function f to its
associated observable denoted by Of,T (σj , τ). The argument τ is the value
that the time reference field T 0 takes, whereas the values σj with j = 1, 2, 3
are those values that the spatial reference fields T j take. A brief summary
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with more details about the observable map can be found in [5, 10]. The
construction requires that the reference fields and the constraints satisfy, at
least weakly, {T I , cJ} ' δIJ . This is usually obtained by going over to an
equivalent set of constraints for which this property is satisfied. The dy-
namics of the observables cannot certainly be generated by the canonical
Hamiltonian because we have by construction {Of,T , Hcan} ' 0 and thus
only a trivial dynamics would be allowed. Instead, the dynamics is gener-
ated by a so-called physical Hamiltonian Hphys that does not vanish on the
physical phase space. The corresponding Hamiltonian equations are given by

OA,T (τ)

dτ
= {OA,T (τ), Hphys} ,

OE,T (τ)

dτ
= {OE,T (τ), Hphys} .

In the context of the deparametrized models for LQG, either one or four
reference fields are chosen. In the first case, we obtain a partially reduced
phase space with respect to the Hamiltonian constraint and the spatial dif-
feomorphism constraints are solved via Dirac quantization. For the latter
case, we obtain the fully reduced phase space. Now, in general, both kinds of
models describe a quantization of GR. However, since these models differ for
instance in the total number of dof, this is already a hint that a comparison
of the two quantum theories might be a non-trivial step. In general, even
if we would quantize exactly the same model with either Dirac or reduced
quantization, it might be the case that we end up with different quantum
theories. In the following, we want to compare the models obtained in [3]
and [5] and discuss their similarities and differences.

3. The one Klein–Gordon scalar field model

The model introduced in [3] considers gravity and one massless Klein–
Gordon (KG) scalar field described by the following action

S
[
g, ϕ0

]
=

1

κ

∫
d4X

√
det(g)R+

1

2

∫
d4Xgµνϕ0

,µϕ
0
,ν

with κ = 1
16πGN

and we introduced the label 0 to indicate that ϕ0 is the
reference field for the time coordinate. This model is a natural generaliza-
tion of the APS model in loop quantum cosmology [13] to full loop quantum
gravity. In order to obtain the physical sector in the quantum theory, one
uses the following strategy: In [3] the constraints ca, gj are solved via Dirac
quantization and this requires to work at the level of the Gauss and diffeo-
morphism invariant Hilbert space Hdiff . The Hamiltonian constraint has the
following form

c = cgeo +
1

2

π2
0√
q
+

1

2

√
qqabϕ0

,aϕ
0
,b with q := det(q) .
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One solves the Hamiltonian constraint for the scalar field momentum π0 by
using the Brown–Kuchař mechanism, that is using ϕ0

,a = − cgeoa
π0

. This ensures
that the constraint can be written in deparametrized form1 and obtains the
equivalent constraint

c̃ = π0 − h , h =

√
−√q cgeo +

√
q
√
(cgeo)2 − qabcgeo

a cgeo
b . (3.1)

The double square root comes from the fact that after using the Brown–
Kuchař mechanism, the constraint is a fourth order polynomial in π0. Then,
one promotes the constraint to an operator on Hdiff and shows that due to
the fact that ϕ0 is chosen as a reference field for time and π̂0(x) = −i~ δ

δϕ0(x)
,

the constraint equation ˆ̃cψ = 0 can be expressed as a Schrödinger equation
for ψ with a physical Hamiltonian of the form of

Ĥphys =

∫
d3x

√
−
√
q̂ ĉgeo +

√
q̂

√
(ĉgeo)2 − ̂qabcgeo

a cgeo
b .

Since Hphys is implemented on Hdiff , the second term in the second square
root should annihilate spatially diffeomorphism invariant states2 and hence
the final Hamiltonian one works with in that model is

Ĥphys =

∫
d3x

√
−2
√
q̂ ĉgeo .

Being already at the quantum level following [3], one can construct quantum
Dirac observables whose classical limit are the Dirac observables discussed
above.

Here, we will slightly modify the model and consider the partially re-
duced phase space with respect to the Hamiltonian constraint already at
the classical level and show that we end up with exactly the same form
of the physical Hamiltonian. Instead of the Brown–Kuchař mechanism, we
consider the result of [4] and allow an equivalent Hamiltonian constraint c̃′
that does not deparametrize, but depends on the reference field ϕ0 only in
a specific form — in our case via its spatial derivatives. We solve, as before,
for π0 without using the Brown–Kuchař mechanism and obtain

c̃′ = π0 − h , h =
√
−2√q cgeo − qqabϕ0

,aϕ
0
,b .

1 A constraint c deparametrizes if it can be written as c = p − h where h does not
depend on the configuration variable associated with the momentum p.

2 This has, strictly speaking, not be shown in [3] but just assumed to be valid for that
model.
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The constraint c̃′ satisfies {ϕ0(x), c̃′(y)} = δ(3)(x, y) and hence we are in the
situation that we can apply the observable map and construct observables
with respect to the Hamiltonian constraint c̃′. We do this for the elementary
phase space variables (A,E) and use the property from [8] that the multi
parameter family of maps Oτ : f 7→ Of,T (τ) is a homomorphism from the
commutative algebra of functions on phase space to the commutative algebra
of weak Dirac observables, both with pointwise multiplication,

Of,T (τ) +Og,T (τ) = Of+g,T (τ) , Of,T (τ)Og,T (τ) = Ofg,T (τ) .

Considering this, we have in our case for a generic phase space function
f(A,E),

Of(A,E),T (τ) = f(OA,T (τ), OE,T (τ)) .

Using this, it can be shown that the physical Hamiltonian for the observables
defined on the (partially) reduced phase space has the form of

Hphys =

∫
d3xH(x) with H(x) = Oh,ϕ0 =

√
−2
√
QCgeo , (3.2)

where we used the abbreviations Ocgeo,ϕ0 = Cgeo, Qab = Oqab,ϕ0 and we used
that Oϕ0

,a,ϕ
0 = 0 [4]. The ADM 3-metric qab is understood as a function of

A,E. The algebra of these elementary variables is given by [9]

{OA(x),ϕ0(τ), OE(y),ϕ0(τ)} = O{A(x),E(y)}∗,ϕ0(τ) = O{A(x),E(y)},ϕ0(τ)

= δ(3)(x, y) .

Here, {., .}∗ denotes the Dirac bracket constructed from the set of second
class constraints (gτ := ϕ0 − τ, c̃′) which simplifies to the Poisson bracket
for A,E because both of them commute with the reference field ϕ0. We
realize that the elementary observables satisfy a standard canonical alge-
bra and hence a representation of this algebra can be found. Since in this
model, the Gauss and diffeomorphism constraints are again solved via Dirac
quantization, the physical Hilbert space Hphys can be identified with the
above mentioned Hdiff . Therefore, we obtain the same physical sector in
the quantum theory with the same physical Hamiltonian operator Ĥphys as
in [3], where there is explained in detail how Ĥphys can be implemented on
Hdiff . The advantage compared to the derivation in [3] is that if we directly
quantize the partially reduced phase space, we do not obtain a double square
root form of the physical Hamiltonian and hence do not have to assume that
certain parts of this operator vanish on spatially diffeomorphism invariant
states. In the next section, we want to discuss a model with four reference
fields for which only the Gauss constraint is solved via Dirac quantization.
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4. The four Klein–Gordon scalar fields model

In case we want to derive the reduced phase space with respect to the
Hamiltonian as well as the spatial diffeomorphism constraints, we need to
introduce four reference fields in total. Coming from the model discussed in
the last section, a natural candidate for such a model is the four KG scalar
fields model described by the following action:

S
[
g, ϕ0, ϕj

]
=

1

κ

∫
d4X

√
det(g)R+

1

2

∫
d4XgµνδIJϕ

I
,µϕ

J
,ν

with I, J = 0, 1, 2, 3 and ϕI = (ϕ0, ϕj) with j = 1, 2, 3 and ϕj are the three
reference fields for the spatial coordinates. The detailed constraint analysis
of this model is described in [5] and we end up with the following spatial
diffeomorphism and Hamiltonian constraints

c = cgeo +
1

2

δIJπIπJ√
q

+
1

2

√
qδIJq

abϕI,aϕ
J
,b , ca = cgeo

a + πJϕ
J
,a ,

where πJ are the canonical conjugate momenta to ϕJ , qab is again under-
stood as a function of (A,E) and cgeo, cgeo

a denote the geometric part of the
Hamiltonian and spatial diffeomorphism constraint, respectively. As shown
in detail in [5], a set of abelianized constraints can be obtained by solving c
for π0 and ca for πj leading to

c̃ = π0 − h
(
A,E, ϕ0, ϕj

)
, h = − b

2a
±

√(
b

2a

)2

− c

a
,

c̃j = πj − hj
(
A,E, ϕ0, ϕj

)
, hj = ϕbj

(
cgeo
b + hϕ0

,b

)
with

a :=
(
1 + δjkϕajϕ

b
kϕ

0
,aϕ

0
,b

)
, b := δjkϕajϕ

b
k

(
cgeo
a ϕ0

,b + cgeo
b ϕ0

,a

)
,

c := qδjkq
abϕj,aϕ

k
,b + δjkϕajϕ

b
kc

geo
a cgeo

b + 2
√
qcgeo .

Now, if we construct observables OA,(ϕ0,ϕj)(σ
j , τ), OE,(ϕ0,ϕj)(σ

j , τ) with re-
spect to c̃ and c̃j using the reference fields ϕ0, ϕj in this model, we obtain
the following form of the physical Hamiltonian [5]:

Hphys =

∫
S

d3σ

√
−
(
2
√
QCgeo +QQjkδjk + Cgeo

j Cgeo
k δjk

)
.

Here, S is the so-called scalar field manifold coordinatized by the values σj
that the scalar fields ϕj can take. The next step in the reduced quantization
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program is to look for representations of the observable algebra, that in the
four KG fields model has again the standard canonical form [5]{

OA,(ϕ0,ϕj)(τ, σ), OE,(ϕ0,ϕj)

(
τ, σ′

)}
= δ(3)

(
σ, σ′

)
.

Here, a natural choice is the AS representation by going over to the holonomy-
flux algebra. However, we are only interested in those representations for
which the physical Hamiltonian can be promoted to a well-defined operator,
as otherwise the quantum dynamics cannot be formulated. If we choose this
representation and look at the explicit form of the physical Hamiltonian den-
sity, the following problem occurs: Because the unitary operators associated
with the spatial diffeomorphisms are not implemented weakly continuously
in the AS representation and hence the infinitesimal generators Ĉgeo

j do not
exist. However, H(σ) involves a term of the form δjkCgeo

j Cgeo
k and hence we

realize that H(σ) cannot be quantized using the AS representation. This
issue does not arise in the other existing models because there the spatial
diffeomorphism constraints occurs in the combination QjkCgeo

j Cgeo
k and this

can indeed be quantized using LQG techniques. We conclude that in the
case of the one and the four KG scalar field(s) model, Dirac and reduced
quantization yield to very different results. In the first case, the physical
Hilbert space can be obtained whereas in the latter case a quantization of
the classical reduced theory is not even possible with standard LQG tech-
niques. In the next section, we introduce a generalization of the four KG
scalar fields model that cures this problem and show that in a certain limit
Dirac quantization and reduced quantization lead to the same quantum dy-
namics.

4.1. Generalization of the four Klein–Gordon scalar field model

We consider the following generalization of the four scalar field model
introduced in [5]

S[g, ϕ0, ϕj ,Mjj ] =
1

κ

∫
d4X

√
det(g)R

+
1

2

∫
d4Xgµν

ϕ0
,µϕ

0
,ν +

3∑
j=1

Mjjϕ
j
,µϕ

j
,ν

 ,

as before, the reference fields are ϕI = (ϕ0, ϕj) with j = 1, 2, 3. The Kro-
necker delta δjk in the spatial part has been replaced by a more general
diagonal matrix Mjk that involves 3 additional dynamical degrees of free-
dom (dof) sitting in Mjj . Hence, in addition to GR, we have 7 more scalar
field dof. Likewise to the models in the seminal papers [11, 14], the system
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with these more than four additional dof exhibits second class constraints.
The reduction with respect to these second class constraints yields a phase
space with four additional scalar fields and first class constraints only. Here,
the motivation of the generalization of our model follows exactly this idea.
As discussed in detailed form in [5], the generalized model has 6 second class
constraints which reduce the three additional dof sitting in Mjj . After re-
duction with respect to the second class constraints, we end up next to the
Gauss constraint with the following first class constraints:

ctot
a = cgeo

a + π0ϕ
0
,a + πjϕ

j
,a ,

ctot = cgeo +
π2

0

2
√
q
+

1

2

√
qqabϕ0

,aϕ
0
,b +

3∑
j=1

ϕaj
(
cgeo
a + π0ϕ

0
,a

)√
qbcϕj,bϕ

j
,c .

Likewise to the former model, we can solve ctot for π0 and ctot
a for πj and

consider the equivalent set of constraints

c̃tot := π0 − h
(
qab, p

ab, ϕ0, ϕj
)
, h = − b

2
±

√(
b

2

)2

− c ,

c̃tot
j := πj − hj

(
qab, p

ab, ϕ0, ϕj
)
, hj = ϕaj

(
cgeo
a + π0ϕ

0
,a

)
,

now with

b := 2
√
q

3∑
j=1

ϕ0
,aϕ

a
j

√
qcdϕj,cϕ

j
,d ,

c := qqabϕ0
,aϕ

0
,b + 2

√
q

3∑
j=1

ϕaj c
geo
a

√
qbcϕj,bϕ

j
,c + 2

√
qcgeo .

After the construction of observables with respect to c̃tot, c̃tot
j , as shown

in [5], their algebra has the standard canonical form given by [5]{
OA,(ϕ0,ϕj)(τ, σ), OE,(ϕ0,ϕj)

(
τ, σ′

)}
= δ(3)

(
σ, σ′

)
.

The dynamics of these observables is encoded in the first order Hamiltonian
equations

OA,(ϕ0,ϕj)

dτ
(σ, τ) = {OA,(ϕ0,ϕj)(σ, τ), Hphys} ,

OE,(ϕ0,ϕj)

dτ
(σ, τ) = {OE,(ϕ0,ϕj)(σ, τ), Hphys}



348 K. Giesel, A. Oelmann

with a physical Hamiltonian of the form of

Hphys =

∫
S

d3σ

√√√√−2√QCgeo − 2
√
Q

3∑
j=1

√
QjjCgeo

j Cgeo
j (σ) . (4.1)

We realize that in Hphys of this generalized model, the spatial diffeomor-
phism constraints occur only in the combination QjjCgeo

j Cgeo
j which is a

specific case of the combination QjkCgeo
j Cgeo

k . For the latter, it has been
shown in [1] that a well-defined operator exists in the AS representation.
The main reason for this to be the case is that here, the Cgeo

j s are con-
tracted with the inverse metric components and not just with a Kronecker
delta as it was the case in the four KG scalar field model without the gener-
alization. Thus, in this model, the reduced phase space quantization can be
performed. Moreover, we can choose the AS representation for Hphys and
use the techniques introduced in [1,15] to formulate the quantum dynamics
as discussed in [5].

5. Discussion and conclusions

In this letter, we summarized the main features of the scalar fields mod-
els introduced in [3] and [5]. The first one involves only one KG reference
scalar field, whereas the latter one involves four KG reference fields. As
a consequence, the spatial diffeomorphism constraints are solved via Dirac
quantization in [3] and via reduced quantization in [5]. Both models can be
understood as natural generalizations of the APS model in loop quantum
cosmology to full LQG. Surprisingly, it turns out that the naive general-
ization of the APS model by coupling four KG fields to gravity leads to
a reduced model whose classical dynamics cannot be quantized using the
Ashtekar–Lewandowski representation of LQG. However, to circumvent this
problem, a slight generalization of this model is introduced that considers
three additional scalar fields along the lines of the seminal models in [12,14].
This yields to a model with a reduced phase space and reduced dynamics
that can be quantized using standard techniques developed for LQG. We
realize that the two physical Hamiltonians in (3.2) and (4.1) differ. How-
ever, the second term under the square root form in (4.1) can be related to
the momentum density of the scalar fields ϕj and this can be understood
as a fingerprint of the dynamically coupled observer onto the system that is
absent in the case of Dirac quantization. In the limit, where this is assumed
to vanish, the two physical Hamiltonians agree.
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