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By using a scalar field as a relational time variable for the dynamics
of the gravitational field, we construct mathematically complete and well-
defined models of loop quantum gravity, in which the dynamics of quantum
geometry is explicitly computable, at least in certain simple examples.
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1. Introduction

Loop quantum gravity [1–3] is based on a canonical quantization of gen-
eral relativity in the Ashtekar formulation, in which the basic variables are
the connection Aia and the densitized triad Eai of the (inverse) spatial met-
ric qab. In this formulation, general relativity is encoded in the Gauss,
diffeomorphism, and Hamiltonian constraints, arising from gauge invariance
under local rotations of the triad, and under diffeomorphisms tangent and
orthogonal to the spatial surfaces of the 3+1 decomposition of spacetime.

In the quantum theory, implementation of the Gauss and diffeomor-
phism constraints is straightforward. Their solution space is spanned by the
so-called spin network states, which give a kinematical description of a quan-
tized, discrete spatial geometry. However, describing the dynamics of these
states through quantizing the Hamiltonian constraint and looking for its so-
lutions has proven to be technically extremely challenging. An alternative
approach to the problem of dynamics in loop quantum gravity is provided
by the so-called method of deparametrization, in which we consider gravity
coupled to a matter field, and use the matter field as a physical, relational
time variable, with respect to which the evolution of the quantum state of
the gravitational field is described.
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2. The physical Hamiltonian in deparametrized LQG

In practice, the most useful choice for the reference matter field is a scalar
field: either a free Klein–Gordon field [4–6] or an irrotational dust field [7,8].
The physical Hamiltonian, which generates the dynamics of a spin network
state |Ψ〉 through the Schrödinger equation i d

dφ |Ψ〉 = Ĥphys|Ψ〉, is given
respectively in the two cases by

Ĥphys =

∫
d3x

̂√
−2√qC or Ĥphys =

∫
d3x Ĉ , (1)

where C denotes the gravitational Hamiltonian constraint.
In order to give an explicit construction [6] of the formal objects in (1),

thereby completing the definition of the dynamics of the theory, it is useful
to start with the following classical identity. The gravitational Hamiltonian
constraint is usually expressed as
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where F iab is the curvature of the Ashtekar connection, β is the Barbero–
Immirzi parameter, and Ki

a = KabE
b
i /
√
q, with Kab the extrinsic curvature

of the spatial surface. However, modulo terms proportional to the Gauss
constraint, expression (2) is identically equal to
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where (3)R is the Ricci scalar of the spatial surface.
The advantage of this rewriting is that an operator corresponding to the

second term of (3) can be constructed [9] based on Regge’s formula, which
approximates the integral

∫
d3x
√
q (3)R in terms of the hinge lengths and

deficit angles of a cellular decomposition of the spatial surface. These can
be quantized using the length and angle operators available in loop quantum
gravity, and the resulting operator is remarkably simple in comparison to
the operator obtained earlier by quantizing the second term of (2).

To quantize the first term of (3), the curvature of the Ashtekar connec-
tion must be regularized in terms of the holonomy of the connection around
a small loop. It is then important to specify this loop in such a way that
the resulting operator can be made symmetric (in order to eventually ob-
tain a self-adjoint physical Hamiltonian). In particular, the loop assignment
introduced by Thiemann in order to define the Hamiltonian constraint op-
erator [10] is not suitable for constructing a symmetric operator. In [6], we
provide an improved prescription for the loop, which is sufficient to ensure
that a symmetric Hamiltonian is obtained.
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3. Computing the time evolution of spin network states

With an explicit construction of the physical Hamiltonian operator com-
pleted, it becomes possible to study the dynamics of the resulting theory
through concrete calculations. An exact evaluation of the time evolution
of a given spin network state seems a very difficult task to achieve, as it
would require one to diagonalize the rather complicated physical Hamilto-
nian (or at least the restriction of the operator to a certain subspace of
the full Hilbert space of the theory). However, calculations making use of
various approximations can still be carried out.

For large values of the Barbero–Immirzi parameter β, the relatively com-
plicated first term in (3) can be considered as a perturbation over the sig-
nificantly simpler second term, whose eigenstates and eigenvalues can be
computed at least numerically. This enables one to develop an approxi-
mate spectral decomposition of the full physical Hamiltonian based on the
corresponding decomposition of the unperturbed Hamiltonian, using stan-
dard time-independent perturbation theory of quantum mechanics. This
approach is particularly relevant to the case of the free Klein–Gordon field
as the physical time variable, since in that case, the physical Hamiltonian
involves a square root, and a spectral decomposition of the operator under
the square root is required in order to give a concrete definition of the Hamil-
tonian. For a more detailed discussion of this method, including (numerical)
examples of using it to compute the dynamics of simple states of quantum
geometry, we refer the reader to our recent article [11].

In the case of the dust field, the physical Hamiltonian involves no square
root, and its action is computable regardless of the value of the Barbero–
Immirzi parameter. Time evolution over a sufficiently short interval of time
can then be calculated simply by expanding the quantity of interest in powers
of the time variable. For example, the time-dependent expectation value of
a geometrical observable such as the volume operator would have the form
of 〈V (t)〉 = v0 + v1t+ v2t

2 + . . . , with the coefficients given by expectation
values of repeated commutators of the volume with the Hamiltonian in the
initial state. The first few coefficients of such an expansion can be computed
numerically, at least for simple enough initial states. Concrete examples are
again given in [11].

4. Summary and outlook

The problem of dynamics in loop quantum gravity can be treated by
using a scalar field as a relational time variable for the evolution of the
quantized gravitational field. By giving an explicit construction of the phys-
ical Hamiltonian that governs the quantum dynamics of the gravitational
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field, we complete the definition of a class of mathematically complete and
well-defined models of loop quantum gravity, and make it possible to inves-
tigate the dynamics of such models through concrete calculations.

To gain a deeper understanding of the physical content of these models,
one should study the dynamics of states having a clear and satisfactory
physical interpretation. While the well-known heat kernel coherent states
have good kinematical peakedness properties with respect to certain loop
quantum gravity operators [12, 13], they are based on a fixed graph, and
hence it seems unlikely that they would be dynamically coherent under a
graph-changing Hamiltonian. The problem of developing coherent states
compatible with the dynamics of our models is at the moment fully open.

From a practical point of view, it would undoubtedly be useful to further
develop approximation methods for performing calculations within our mod-
els — preferably methods not relying heavily on numerical computations. A
recent attempt in this direction has been made in [14], where we use angular
momentum coherent states to develop a scheme that can be used to analyze
the matrix elements of our Hamiltonian.
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