Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 2

KALUZA-KLEIN UNIVERSE FILLED WITH WET
DARK FLUID IN f(R,7) THEORY OF GRAVITY*

P.K. SAHOO

Department of Mathematics, Birla Institute of Technology and Science
Pilani Hyderabad Campus, Hyderabad-500078, India

pksahoo@hyderabad.bits-pilani.ac.in

(Received December 21, 2016)

Kaluza—Klein metric is considered with wet dark fluid (WDF) source in
f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-
momentum tensor proposed by Harko et al. (2011). The exact solutions of
the field equations are derived from a time varying deceleration parameter.

DOI:10.5506 / APhysPolBSupp.10.369

1. Introduction

The nature of the dark energy (DE), a component of the Universe [1-3],
remains one of the greatest mysteries of cosmology. There are many candi-
dates for DE such as: cosmological constant, quintessence [4], k-essence [5],
phantom energy [6] etc. Modified or alternative theories of gravity are the
second proposal to justify the current expansion of the Universe. The re-
cently developed f(R,T') theory of gravity is one such example.

In this work, we use WDF as a candidate for DE. This model is in the
spirit of generalized Chaplygin gas (GCG), where a physically motivated
EOS is offered with the properties relevant for DE problem. The EOS for
WDF |[7] is

pwpr = w(pwpr — p7) . (1)

This EOS is a good approximation for many fluids, including water, in which
the internal attraction of molecules makes negative pressure. The param-
eters w and p* are taken to be positive and 0 < w < 1. If ¢ denote the
adiabatic sound speed in WDF, then w = ¢2 [8]. The energy conservation
equation for WDF is

pwor + 4H (pwpr + pwpr) = 0. 2)
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Using 4H = VVI and EOS (1), the above equation can be written as

w o, C
1o’ Tyar (3)

where C' is the constant of integration and V' is the volume expansion. Wet
dark fluid naturally includes two components: one of them behaves as a
cosmological constant as well as a standard fluid with an equation of state
p = wp. If we consider C' > 0, this fluid will not violate the strong energy
condition p 4+ p > 0. Hence,

PWDF =

pwDF + pwpF = (1 +w)pwpr —wp™ = (1 +w) >0. (4)

v (1+w)
The action for f(R,T) gravity is

S=15: [ FRDVg A+ [ Layvgate, (5)

where f(R,T) is an arbitrary function of Ricci scalar R, T be the trace of
stress-energy tensor T;; of the matter. L, is the matter Lagrangian density.
The energy momentum tensor 7;; is defined as

_ 2 0(V=9)Lm
ﬂj_ \/jg 697;]' : (6)

By the help of matter Lagrangian L,,, the matter energy tensor is given by

Tij = (pwDF + PWDF)UiUj — PWDFGij » (7)
where u’ = (1,0, 0,0, 0) is the five velocity in comoving coordinates satisfying
the condition u'u; = 1 and uivjui = 0. In equation (7), pwpr is the
energy density, pwpr is pressure and the matter Lagrangian can be taken
as Ly = —pwDF-

Harko et al. [9] presented three classes of models. In this paper, we con-
sider f(R,T) = R+ 2f(T), where f(T) is an arbitrary function of energy
tensor. The f(R,T) gravity field equations are derived by varying the ac-
tion S with respect to metric tensor g;j. For a WDF matter source, (7) takes
the form of

Rij — 5Rgij = 87Ty + 2" (T)Tyj + [2pwor f (T) + f(T)] gij - (8)

2. Field equations and solution
The five-dimensional Kaluza—Klein metric is
ds® = dt? — A(t)? (dz® + dy® + dz%) — B(t)*dy?, (9)
where the fifth coordinate ¢ is space-like.
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Here, we consider f(T') = AT, where ) is a constant.
The f(R,T) gravity field equations (8) for the metric (9) can be writ-
ten as

2H;, + 3H; + 2H,Hy + H), + H;, = (87 +4\)pwpr — Apwpr,  (10)
3 (H; + 2H§) = (87T + 4A)pWDF — APWDF , (11)
3(H}+ H,Hy) = —(87 + 3)\)pwor + Apwor,  (12)

where prime denotes derivative with respect to time t. H, = ‘% =H,=H,

and Hy = % are the directional Hubble parameters.
Here, we have three equations with four unknowns. To get a determin-
istic solution, we assume the deceleration parameter as

aa” B

- — 14+ 13
a a’? +1+a5’ (13)

where 8 > 0 is a constant and a is the average scale factor.
The mean Hubble parameter H = ¢ can be obtained from the above

equation as

H:%:Al (14+a77). (14)
where A; is an integration constant. Again, integrating (14), we get
a= (eAlﬁt - 1)‘1* . (15)
Using the spatial volume V = a* = A3 B, we obtain the scale factors A, B as
A= (etor—1) Wopo (et - 1)2 . (16)
The directional Hubble parameters are obtained as
Ho——Y g —m, szﬁfﬁ%. (17)

T3 (eMBt - 1)

Using the above values, the energy density (pwpr) and the pressure (pwpr)
are obtained as

B A2 BAeAPt  (3BA+80m+38A)e> 41 18)
PWDE = (G 30) (ST +4X) — A2 | eABt—1 3(eMBt—1)2 ’
AR

PWDE = (8 1 30) (87 + 4\) — A2

(87 + 3\)BeMPt {167 — 4\ — 3B(87 + 3)\)}62A1'Bt]

ed1Bt — 1 3(eAPt —1)2 (19)
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2
The anisotropy parameter of the expansion is A = i Z?Zl (HZHH ) = %.

The scalar expansion (§ = 4H) and the shear (02 = JAH?) are

-1 .
0 =440 (eAlﬂt - 1) , 0% = B A3e2MPt (eArBl — 1) & (20)

3. Conclusion

The spatial volume and average scale factor of the model is zero at initial
time ¢ — 0 indicating that the model starts at Big Bang and has a point type
singularity too. The anisotropic parameter becomes constant and our model
is expanding with time. From Figs. 1 (left) and (right), the energy density
of WDF is a decreasing function of time and remains positive throughout
the Universe whereas the pressure is the increasing function of time and
becomes constant.
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Fig. 1. Left: Plot of pwpr vs. t with A; = 1,8 = 1.5, A = —6. Right: Plot of pwpr
vs. t with A1 =1,8=15\X=—6.
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