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Kaluza–Klein metric is considered with wet dark fluid (WDF) source in
f(R, T ) gravity, where R is the Ricci scalar and T is the trace of the energy-
momentum tensor proposed by Harko et al. (2011). The exact solutions of
the field equations are derived from a time varying deceleration parameter.

DOI:10.5506/APhysPolBSupp.10.369

1. Introduction

The nature of the dark energy (DE), a component of the Universe [1–3],
remains one of the greatest mysteries of cosmology. There are many candi-
dates for DE such as: cosmological constant, quintessence [4], k-essence [5],
phantom energy [6] etc. Modified or alternative theories of gravity are the
second proposal to justify the current expansion of the Universe. The re-
cently developed f(R, T ) theory of gravity is one such example.

In this work, we use WDF as a candidate for DE. This model is in the
spirit of generalized Chaplygin gas (GCG), where a physically motivated
EOS is offered with the properties relevant for DE problem. The EOS for
WDF [7] is

pWDF = ω(ρWDF − ρ∗) . (1)

This EOS is a good approximation for many fluids, including water, in which
the internal attraction of molecules makes negative pressure. The param-
eters ω and ρ∗ are taken to be positive and 0 ≤ ω ≤ 1. If cs denote the
adiabatic sound speed in WDF, then ω = c2s [8]. The energy conservation
equation for WDF is

ρ∗WDF + 4H(pWDF + ρWDF) = 0 . (2)
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Using 4H = V ′

V and EOS (1), the above equation can be written as

ρWDF =
ω

1 + ω
ρ∗ +

C

V (1+ω)
, (3)

where C is the constant of integration and V is the volume expansion. Wet
dark fluid naturally includes two components: one of them behaves as a
cosmological constant as well as a standard fluid with an equation of state
p = ωρ. If we consider C > 0, this fluid will not violate the strong energy
condition p+ ρ ≥ 0. Hence,

pWDF + ρWDF = (1 + ω)ρWDF − ωρ∗ = (1 + ω)
c

V (1+ω)
≥ 0 . (4)

The action for f(R, T ) gravity is

S =
1

16π

∫
f(R, T )

√
−g d4x+

∫
Lm
√
−g d4x , (5)

where f(R, T ) is an arbitrary function of Ricci scalar R, T be the trace of
stress-energy tensor Tij of the matter. Lm is the matter Lagrangian density.
The energy momentum tensor Tij is defined as

Tij = − 2√
−g

δ (
√
−g )Lm

δgij
. (6)

By the help of matter Lagrangian Lm, the matter energy tensor is given by

Tij = (pWDF + ρWDF)uiuj − pWDFgij , (7)

where ui = (1, 0, 0, 0, 0) is the five velocity in comoving coordinates satisfying
the condition uiui = 1 and ui∇jui = 0. In equation (7), ρWDF is the
energy density, pWDF is pressure and the matter Lagrangian can be taken
as Lm = −pWDF.

Harko et al. [9] presented three classes of models. In this paper, we con-
sider f(R, T ) = R + 2f(T ), where f(T ) is an arbitrary function of energy
tensor. The f(R, T ) gravity field equations are derived by varying the ac-
tion S with respect to metric tensor gij . For a WDF matter source, (7) takes
the form of

Rij − 1
2Rgij = 8πTij + 2f ′(T )Tij +

[
2pWDFf

′(T ) + f(T )
]
gij . (8)

2. Field equations and solution

The five-dimensional Kaluza–Klein metric is

ds2 = dt2 −A(t)2
(
dx2 + dy2 + dz2

)
−B(t)2dψ2 , (9)

where the fifth coordinate ψ is space-like.
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Here, we consider f(T ) = λT , where λ is a constant.
The f(R, T ) gravity field equations (8) for the metric (9) can be writ-

ten as

2H ′x + 3H2
x + 2HxHψ +H ′ψ +H2

ψ = (8π + 4λ)pWDF − λρWDF , (10)

3
(
H ′x + 2H2

x

)
= (8π + 4λ)pWDF − λρWDF , (11)

3
(
H2
x +HxHψ

)
= −(8π + 3λ)ρWDF + λpWDF , (12)

where prime denotes derivative with respect to time t. Hx = A′

A = Hy = Hz

and Hψ = B′

B are the directional Hubble parameters.
Here, we have three equations with four unknowns. To get a determin-

istic solution, we assume the deceleration parameter as

q = −aa
′′

a′2
= −1 +

β

1 + aβ
, (13)

where β > 0 is a constant and a is the average scale factor.
The mean Hubble parameter H = a′

a can be obtained from the above
equation as

H =
ȧ

a
= A1

(
1 + a−β

)
, (14)

where A1 is an integration constant. Again, integrating (14), we get

a =
(
eA1βt − 1

) 1
β
. (15)

Using the spatial volume V = a4 = A3B, we obtain the scale factors A,B as

A =
(
eA1βt − 1

) 1
3β
, B =

(
eA1βt − 1

) 3
β
. (16)

The directional Hubble parameters are obtained as

Hx =
A1

3 (eA1βt − 1)
= Hy = Hz , Hψ =

3A1

eA1βt − 1
. (17)

Using the above values, the energy density (ρWDF) and the pressure (pWDF)
are obtained as

ρWDF =
A2

1

(8π+3λ)(8π+4λ)−λ2

[
βλeA1βt

eA1βt−1
− (3βλ+80π+38λ)e2A1βt

3(eA1βt−1)2

]
, (18)

pWDF =
A2

1

(8π + 3λ)(8π + 4λ)− λ2

×
[

(8π + 3λ)βeA1βt

eA1βt − 1
+
{16π − 4λ− 3β(8π + 3λ)}e2A1βt

3(eA1βt − 1)2

]
. (19)
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The anisotropy parameter of the expansion is ∆ = 1
4

∑4
i=1

(
Hi−H
H

)2

= 4
3 .

The scalar expansion (θ = 4H) and the shear (σ2 = 4
2∆H2) are

θ = 4A1e
A1βt

(
eA1βt − 1

)−1
, σ2 = 8

3A
2
1e

2A1βt
(
eA1βt − 1

)−2
. (20)

3. Conclusion

The spatial volume and average scale factor of the model is zero at initial
time t→ 0 indicating that the model starts at Big Bang and has a point type
singularity too. The anisotropic parameter becomes constant and our model
is expanding with time. From Figs. 1 (left) and (right), the energy density
of WDF is a decreasing function of time and remains positive throughout
the Universe whereas the pressure is the increasing function of time and
becomes constant.
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Fig. 1. Left: Plot of ρWDF vs. t with A1 = 1, β = 1.5, λ = −6. Right: Plot of pWDF

vs. t with A1 = 1, β = 1.5, λ = −6.
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