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SOLUTION WITH SEPARABLE VARIABLES FOR NULL
ONE-WAY MAXWELL FIELD IN KERR SPACE-TIME∗
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We have found in analytic form an exact solution with separable vari-
ables for null one-way Maxwell field ϕAB = ϕ2oAoB on the Kerr space-time
background and have investigated some of its properties. Solution describes
outgoing waves when r > rcr.1 > r+, but for some Maxwell field parame-
ters, this solution describes ingoing, standing and outgoing waves on defined
intervals in the region of r > r+.
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1. Introduction

The problem of evolution of test fields of spin s in the Kerr space-time
(KST) background had been substantially solved [1], but still contains math-
ematical difficulties of theoretical and computational character: separation
of variables (SOV) determines nonlinear eigenvalue problem; numerical and
approximate methods that are used are faced with computational difficul-
ties [2].

Consideration of algebraically special (degenerate) Maxwell fields gives
an exact solution in analytic form as an arbitrary function of two vari-
ables, which are complex integrals of system’s equations in Minkowski space-
time [3] and KST [4,5]. A solution as an arbitrary function does not reveal
clear physical properties, and for looking of its applicability, it is necessary
to build a solution with separated variables. This article is a continuation of
our previous work [4], the most of introduction can be found there. Our pur-
pose is to find a solution with separated variables for null one-way (NOW)
Maxwell field

ϕAB = ϕ2oAoB (1)
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(it is one of two algebraically special fields) in KST, which in the Boyer–
Lindquist coordinates is given by the line element

ds2 =

(
1− 2Mr

Σ

)
dt2 +

4Mra sin2 θ

Σ
dtdφ− Σ

∆
dr2

−Σdθ2 −
(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdφ2 , (2)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 = (r − r+)(r − r−), r± =

M ±
√
M2 − a2; and to investigate its properties. Though a solution of this

type has not been considered in Teukolsky’s approach, we will show that it
has some similar properties in the regions that do not include singular points
what confirms advisability of further study.

By choosing a Newman–Penrose null tetrad as the Kinnersley tetrad,
we write down a decoupled system of Maxwell equations in spinor form
for NOW field. In the next section, we will apply a method of separation
of variables (SOV) to the first order system of equations and will find its
solution. Equations are considered in geometrized units c = G = 1.

2. Separated solution of Maxwell equations
in Kerr space-time for null one-way field

Let us consider the system of Maxwell equations for NOW field{
r2+a2

∆
∂ϕ2

∂t + ∂ϕ2

∂r + a
∆
∂ϕ2

∂φ + 1
r−ia cos θϕ2 = 0 ,

ia sin θ ∂ϕ2

∂t + ∂ϕ2

∂θ + i
sin θ

∂ϕ2

∂φ +
(
ctgθ + ia sin θ

r−ia cos θ

)
ϕ2 = 0 .

(3)

As in general case of SOV [1], separability in t and φ follows directly
from stationarity and axisymmetricity of the Kerr metric, and we have
ϕ2(t, r, θ, φ) = eiωt+imφϕ̂2(r, θ). We consider ω ∈ R and m ∈ Z.

After rewriting equations for function ψ(r, θ) = (r − ia cos θ)ϕ̂2(r, θ),
SOV in the form of ψ(r, θ) = R(r)S(θ) is provided automatically, and, in
our special case, additional separation constants do not emerge. Thus, we
obtain a system of two ODEs

R′(r) +

(
iω

r2 + a2

r2 − 2Mr + a2
+ im

a

r2 − 2Mr + a2

)
R(r) = 0 , (4a)

S′(θ) +

(
ctgθ − aω sin θ −m 1

sin θ

)
S(θ) = 0 . (4b)

Points θ = 0, θ = π for equation (4b) are regular singular points. The
solution of equation (4b) is

S(θ) = C2
(1− cos θ)m

sinm+1 θ
e−aω cos θ , (5)



Solution with Separable Variables for Null One-way Maxwell Field . . . 389

C2 ∈ C. For m = 0,−1,−2, . . ., S(θ) becomes infinite at point θ = 0 and
for m = 0, 1, 2, . . . — at point θ = π. We expect that S(θ) and full solution
will have physical meaning beyond these points.

It is not surprising that radial equation (4a), as well as Teukolsky radial
equation (TRE), have two regular singular points at the horizon radii r+
and r−. It has also an irregular singular point at infinity.

The solution of equation (4a) is

R(r) = C1e
−iωr∗ , (6)

where r∗ = r +M ln |∆|+ 2ωM2+ma
2ω
√
M2−a2 ln

∣∣∣ r−r+r−r−

∣∣∣, C1 ∈ C.
By comparing with the general case, where solution is built as series of

(r − r+)/(r − r−) [6], radial NOW solution (6) is an elementary function
of (r − r+)/(r − r−). Asymptotically (at positive infinity), the solution of
TRE [1] has the form of (6).

Further, we find critical points of R(r), which are r−, r+, rcr.1,2 =

±
√
−am/ω − a2. At these points, the increasing–decreasing character of r∗

changes, what means that the wave changes its outgoing–ingoing behavior.
But in all the cases at r → ∞, function r∗(r) is increasing that means the
wave is outgoing. That is why we call the solution “outgoing”.

Critical points rcr.1,2 for some values of m exist only in the special case
−m > aω, and their localization depends on values of parameters a,M of the
Kerr metric and Maxwell field characteristics m and ω. Let us describe the
properties of function R(r) in neighborhood of point rcr.1. When condition
rcr.1 > r+ is fulfilled, we obtain the wave, which is ingoing for r+ < r < rcr.1,
standing on surface r = rcr.1, and outgoing for r > rcr.1. Superradiation
condition mω+/ω > 1, established by Teukolsky [1] and Starobinski and
Churilov [7], is equivalent with the condition of existence of the point rcr.1
outside the horizon: rcr.1 > r+.

For example, we plot the function Re(R(r)). The following parame-
ters C = 1, a = 0.8, M = 1, m = 6, ω = −1 and rcr.1 > r+ are cho-
sen (Fig. 1). For r′∗(r) · r > 0, the wave eiω(t−r∗) is outgoing, and for
r′∗(r) · r < 0 — ingoing.

Finally, the solution of system (3) is

ϕ2(t, r, θ, φ) = Ceiω(t−r∗)+imφ
e−aω cos θ (1− cos θ)m

(r − ia cos θ) sinm+1 θ
. (7)

Teukolsky wrote down an expression for total energy flux per unit solid
angle for outgoing waves at infinity ((5.13) in [1]). Having solution (7), we
calculate Ttr component of energy momentum tensor for NOW Maxwell field
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and flux for all values of r and θ 6= 0, θ 6= π

d2E

dtdΩ
= r2Ttr = |C|2 r

2(1− cos θ)2m

∆ sin2(m+1) θ
e−2aω cos θ . (8)
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Fig. 1. Graph of the real part of R(r) with C = 1, a = 0.8, M = 1, m = 6, ω = −1

(rcr.1 > r+). 1 — Re(R(r)); 2 — r∗(r); 3 — critical points rcr.1, rcr.2; 4 — outer
and inner horizons r+, r−.

3. Conclusions

For null one-way test Maxwell field in KST, we have considered the first
order system of PDEs and have obtained a solution in closed form by method
of separation variables. Some property of this solution joins NOW Maxwell
field angular momentum, frequency and Kerr black hole angular momentum
in superradiant condition. Electromagnetic waves with parameters rcr.1>r+
are outgoing for r > rcr.1, become standing on sphere r = rcr.1 and ingoing
for r < rcr.1.
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