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An analytical solution of exact perturbation equations in the flat ra-
diation-dominated relativistic cosmology posed by Evgeny M. Lifshitz in
1946 is found. From this, we obtain exact form for the scale-dependent
growth factor function which is important in observational cosmology as a
useful tool of model testing.
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The dynamics of inhomogeneous perturbations of the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric play a key role in the explana-
tion of the large scale structure of the Universe and of Cosmic Microwave
Background Radiation (CMB) anisotropies. The first perturbation scheme
in cosmology was worked out as early as in 1946 by Lifshitz [1] (see also [2–5]
for historical remarks and later development).
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Following [3,4], where one finds more complete presentation, let us con-
sider small perturbations around spacially flat FLRW Universe dt2−a2(t)dl2
in regions which are small in comparison to the scale factor a. In that case,
the spatial line element of the spacetime metric can be written as

dl2 = a2(η)
(
dx2 + dy2 + dz2

)
, (1)

where x, y, z are the Cartesian coordinates. We take conformal time η as
a time coordinate, i.e. cdt = a(η)dη and t denotes the cosmic time. The
matter source is described by the perfect fluid energy-momentum tensor
Tµν = (p + ε)uµuν + pgµν , where the pressure p = p(ε) is assumed to be a
function of the energy density ε by a suitable equation of state. Linearized
equations for small perturbations take the form of

δRµν −
1

2
δµν δR =

8πk

c4
δTµν , (2)

where imposing a synchronous reference system, one finds

δT ij = −δij
dp

dε
δT 0

0 , δT i0 = δui , δT 0
0 = δε . (3)

In particular, δui do not vanish and the reference system is not longer co-

moving. For adiabatic perturbations,
√

dp
dε = cs is called the speed of sound.

We are interested in the relative change of energy density (overdensities)
called also fractional density perturbations or density contrast

δm :=
δε

ε
=

c4

16πkε

(
δR0

0 −
1

2
δR

)
=

c4

16πkεa2

(
hj,ii,j − h

,i
,i +

2a′

a
h′
)
, (4)

where hij denote perturbations of the spatial metric (1) and ′ ≡ d
dη . It turns

out that these perturbations can be expressed as plane waves

hij = λ(η)P ij + µ(η)Qij , (5)

where Qij = 1
3δ
i
je
inr and P ij = (13δ

i
j −

ninj

n2 )einr, while the vector n is a
normalized wave vector k = n/a. In that terms, equations (2) are1 (n = |n|)

λ′′ +
2a′

a
λ′ − n2

3
(λ+ µ) = 0 ,

µ′′ + µ′
a′

a

(
2 + 3

dp

dε

)
+
n2

3
(λ+ µ)

(
1 + 3

dp

dε

)
= 0 . (6)

1 Some formulas from [1] have been corrected in [3, 4].



A Note on Evgeny M. Lifshitz Historical Contribution 421

We want to explore the Universe at radiation dominated epoch: p = ε/3,
a = a1η, so equations (6) are now

λ′′ +
2

η
λ′ − n2

3
(λ+ µ) = 0 ,

µ′′ +
3

η
µ′ +

2n2

3
(λ+ µ) = 0 . (7)

System (7) can be written as a third order linear ODE (from now on v = n2

3
for short) for the function λ′(η)

λ(4) +
5

η
λ(3) +

(
2

η2
+ v

)
λ′′ +

(
v

η
− 2

η3

)
λ′ = 0 (8)

which has a general solution in the form of

λ′(η) =
d1
η

+
d3 cos

√
vη − d2 sin

√
vη

η2
. (9)

We are now in position to calculate density contrast (4), which has a form
of plane wave with time-dependent amplitude an(η) for each Fourier mode

δm(n, η, r) =
c4

24πkεa2

(
n2(λ+ µ) +

3a′

a
µ′
)
einr = an(η)e

inr , (10)

where

an(η) =
c4

8πk

λ′
(
n2η2 − 6

)
+ λ′′

(
n2η3 + 6η

)
+ 3η2λ(3)

n2η
(11)

or

an(η) ∼
(
2d2vη+d3

√
v
(
2−vη2

))
sin
√
vη −

√
v
(
2d3
√
vη+d2

(
vη2−2

))
cos
√
vη − 2d1/v

η2
.

(12)

The expansion around small vη � 1 gives

an(η) ∼ −
2 (d1/v − d2

√
v )

η2
− d3v

2

3
η +

d2v
5
2

4
η2 +O(η)3 (13)

which agrees with [3, 4] provided d1 = d2
√
v3. In the limit of vη 7→ ∞ (late

times approximation), we are left with oscillating terms (cf. [1, 3])

an(η) ∼ d2
√
v cos

√
vη + d3

√
v sin

√
vη . (14)
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Let us notice that from now on we may study the evolution of the linear
scalar perturbations (4). One introduces a very useful tool for investigations
of the evolutionary scenarios of the Universe expansion, that is, the growth
factor function and its parametrization

f :=
d lnδm
d lna

= Ωm(a)
γ , (15)

where γ is the growth index. It is often used with the scale-independent ap-
proximation for the perturbation modes. For the LCDMmodel, this function
was a subject of many papers, e.g. [6–11]. From the observations, one ob-
tains data for the growth factor f from the Lyman-alfa forests and galaxy
redshift distortions taken from [12–16]. Since at the radiation epoch a ∼ η,
it would be useful to rewrite formula (15) to the form

f =
η

δm

dδm
dη

(16)

which, in our case, equals to(
d3vη

(
4−vη2

)
+2d2

√
v
(
vη2−2

))
cos
√
vη+

(
d2vη

(
vη2−4

)
+2d3

√
v
(
vη2−2

))
sin
√
vη+4d1

(d3
√
v (vη2−2)−2d2vη) sin

√
vη+(d2

√
v (2−vη2)−2d3vη) cos

√
vη−2d1

.

(17)

It would be challenging to obtain a similar result for more advanced cosmo-
logical scenarios, e.g. the ones presented in [17].
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