SEMICLASSICAL CORRECTIONS TO A REGULARIZED SCHWARZSCHILD METRIC*

HRISTU CULETU

Ovidius University, Department of Physics Bld. Mamaia 124, 900527 Constanta, Romania

(Received February 20, 2017)

 $\rm DOI: 10.5506/APhysPolBSupp. 10.431$

We propose a regular version of the Schwarzschild metric to be valid in microphysics. The time-time metric coefficient is modified as [1] (see also [2])

$$-g_{tt} = 1/g_{rr} \equiv f(r) = 1 - \frac{2m}{r}e^{-\frac{k}{mr}},$$
(1)

where *m* is the black hole mass, *k* is a positive dimensionless constant and the mass *m* has units of length in front of the exponential and 1/length at the exponent. We select k = 2/e, so that f(r) becomes minimal at r = k/m = 2/me. For a horizon to exist, we found that the condition $m \ge m_{\rm P}$ should be obeyed [3].

An expansion of f(r) for $r \gg r_0 = 2/em$ gives us

$$f(r) \approx 1 - \frac{2m}{r} + \frac{4l_{\rm P}^2}{er^2},$$
 (2)

where $l_{\rm P}$ is the Planck length. From (2), one obtains that f(r) acquires its Schwarzschild value when $\hbar = 0$. Solution (1) is not a vacuum solution of Einstein's equations. The source stress tensor has $p_{\rm r} = -\rho$ and fluctuating transversal pressures, where ρ is the energy density and $p_{\rm r}$ is the radial pressure. The Komar energy associated to geometry (1), with k = 2/e, appears as

$$W = \left(mc^2 - \frac{2\hbar c}{er}\right)e^{-\frac{2\hbar}{emcr}} \tag{3}$$

^{*} Poster presented at the 3rd Conference of the Polish Society on Relativity, Kraków, Poland, September 25–29, 2016.

which tends to zero when $r \to 0$ and $W \to mc^2$ at infinity. The classical situation $(\hbar = 0)$ leads to the standard result $W = mc^2$.

REFERENCES

- [1] H. Culetu, Int. J. Theor. Phys. 54, 2855 (2015) [arXiv:1408.3334 [gr-qc]].
- [2] L. Xiang et al., Int. J. Mod. Phys. D 22, 1342016 (2013)
 [arXiv:1305.3851 [gr-qc]].
- [3] A. Bonanno, M. Reuter, *Phys. Rev. D* 62, 043008 (2000) [arXiv:hep-th/0002196].