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We compare the low-eigenvalue spectra of the Overlap Dirac operator
on two sets of configurations at µI/µc

I = 0.5 and 1.5 generated with dy-
namical staggered fermions at these isospin chemical potential on 243 × 6
lattices. We find very small changes in the number of zero modes and low-
lying modes which is in stark contrast with those across the corresponding
finite temperature phases where one sees a drop across the phase transition.
Possible consequences are discussed.
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1. Introduction

The baryon density-temperature (µB–T ) phase diagram of quantum
chromodynamics (QCD) has received a lot of attention for the past few
decades, starting from skeleton diagrams on the basis of simple hadronic
models, which explain the hadron spectrum reasonably well, to the increas-
ingly quantitative attempts to pin it down ab initio from QCD itself using
the non-perturbative lattice approach. As is well-known, one has to face the
famous fermion sign(phase) problem at nonzero baryon density or equiva-
lently nonzero baryon chemical potential, µB, adding an extra layer of un-
certainty to the results obtained. In addition to baryon number, the up and
down quarks also carry isospin. Defining µI as the chemical potential for Iz,
and µu, µd for the up and down quarks, one has µB = 3(µu + µd)/2 and
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µI = (µu−µd)/2 or, alternatively, µu = µB/3+µI and µd = µB/3−µI . The
fermion determinant is real [1, 2] for µI 6= 0 and µB = 0, and one thus has
no sign problem in that case. From a theoretical point of view, the ability to
simulate the theory enables tests of many conceptual issues related to con-
finement and chiral symmetry breaking in the entire µI–T phase diagram,
as we set out to show below.

Staggered fermions are often used for such investigations due to their
remnant chiral symmetry. Kogut–Sinclair [2] introduced the corresponding
fermion action to investigate also whether the isospin symmetry is sponta-
neously broken

SF =
∑
sites

χ̄
[
/D(τ3µI) +m+ iλIετ2

]
χ . (1)

Here χ, χ̄ are two component flavour spinors, τi are the SU(2) flavour
generators, ε = (−1)x+y+z+t is the ‘γ5’ for staggered fermions, µI and m are
isospin chemical potential and quark mass, respectively, and λI is a pionic
source that is sent to zero at the end of the analysis. Reference [2] worked out
the symmetry-breaking patterns and the corresponding observables which
signal them. Further, it was argued that the fermion determinant is positive
definite, enabling simulations.

Employing staggered fermions on 84 lattices with a = 0.299(2) fm at a
lattice quark massma = 0.025, corresponding tomπ ' 260 MeV, Endrődi [3]
recently investigated the phase structure. As can be seen from his results
in Fig. 1 on the chiral condensate, the pion condensate, the isospin density

Fig. 1. Results for the chiral condensate, pion condensate, isospin density (left
panel) and Polyakov line (upper right panel) on 84 lattice from Ref. [3] for mπ '
260 MeV.
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and the Polyakov line, obtained from the partition function Z defined by
SF above and the Wilson gluonic action by using 〈ψ̄ψ〉 = T

V
∂ logZ
∂m , 〈π〉 =

〈ψ̄uγ5ψd − ψ̄dγ5ψu〉 = T∂ logZ/V ∂λI , 〈nI〉 = T∂ logZ/V ∂µI suggest an
aµcI ' 0.2 in the λI → 0 limit.

A linear λI → 0 extrapolation of the data for the three λI values indi-
cated is displayed by points whereas the corresponding line is a chiral theory
fit. The grey vertical band denotes the value of mπ/2 in the lattice units.
The chiral condensate drops rapidly around µcI ' mπ/2, where the pion con-
densate and isospin density also become nonzero as does the Polyakov loop
displayed in the upper half of the right panel. These results show deconfine-
ment to occur as well with the chiral symmetry restoration at the transition
point, µcI . The similarity of this phenomenon with the finite temperature
transition, i.e. µB = 0 = µI , prompts further investigation of the nature of
this transition in terms of the established ideas, such as topological excita-
tions, or phenomenological models, such as the well-known instanton-liquid
model [4] built on instanton-fermion couplings.

Lattice QCD simulations support for the model was observed in the peak
of the instanton-distribution at a radius ρ = 0.3 fm [5]. Note that Overlap
Dirac operator, which has exact chiral symmetry on the lattice as well as an
index theorem, was used for this analysis, by studying its low-eigenmodes
spectrum. Such studies were also carried out for the high-temperature phase.
Number of low eigenmodes were found to get depleted as T increased away
from Tc [6,7]. Furthermore, a gap appeared to separate the low modes from
the others. Localized zero modes were observed [7] for 1.25 ≤ T/Tc ≤ 2,
suggesting the axial symmetry group UA(1) to be restored only gradually
up to 2Tc. Indeed, the scalar and pseudoscalar meson correlators were equal,
as expected in a chiral symmetry restored phase, only after the contribution
of these zero modes was subtracted out from the former. Clearly, a similar
investigation will be interesting for the nonzero chemical potential case as
well, in view of the both the naïve model expectations and the results in
Fig. 1 for µI 6= 0.

2. Our results

Employing dynamical configurations on 243 × 6 lattices, generated with
a Symanzik improved action with 2 stout steps and for a quark mass tuned
to have the physical pion mass, we investigated the eigenvalue spectra of the
Overlap Dirac operator both below and above the isospin breaking phase
transition at aµcI = 0.1, which again corresponds to µcI being mπ/2. We
employed the Arnoldi method to extract the eigenvalues of Overlap Dirac
operator, demanding a residue r = ||DX − η|| ≤ 10−10. It may be noted
that the dynamical configurations are with a nonzero µI = 0.05 and 0.15,
but there is no explicit µI in the operator itself, since our intention is to
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study the topological fluctuations. We extracted ∼ 500 eigenvalues from
each configuration. At both the µI values, computations were done for two
different values of λI — the isospin breaking parameter in the quark matrix.

Since the eigenvalue λ is complex for Dov, we display in Fig. 2 the
|λ|-distributions for λI = 0.0006 both below and above the transition.
Fairly uniform distribution with some low modes are seen in both the cases.
Surprisingly, the distributions are very similar as well, and by overlaying
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Fig. 2. Eigenvalue spectrum of the Overlap Dirac operator on 243 × 6 lattice for
λI = 0.0006 and µI/µcI = 0.5 (left panel) and 1.5 (right panel).

them, one finds them almost indistinguishable with minor quantitative dif-
ferences. Re-plotting them on a log scale, one can easily identify the zero
modes from the gap in the spectrum. Explicit chirality checks were made
to confirm their nature. Zooming in on the eigenvalue distribution on the
log scale, one can see if the near-zero modes have any visible differences.
While a nice smooth rise is seen in Fig. 3, as one moves away from the zero
eigenvalue, the similarity in the distributions for µI/µcI = 0.5 and 1.5 per-
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Fig. 3. Near-zero eigenvalue spectrum of the Overlap Dirac operator on 243 × 6

lattice for λI = 0.0025 for both the µI values (left panel) and for λI = 0.0006 with
µI/µ

c
I = 1.5 (right panel).
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sists for even higher λI = 0.0025, where one observes qualitatively the same
picture as discussed above. The displayed overlay of near-zero modes for
µI/µ

c
I = 0.5 and 1.5 for λI = 0.0025 in the left-hand panel also compares

well with that of µI/µcI = 1.5, λI = 0.0006 in the right-hand panel.
The exact chiral symmetry of the overlap fermions implies that nonzero

modes are doubly degenerate with opposite chirality, while the zero modes
possess only a specific chirality. The latter act as a measure of topology due
to the index theorem the overlap fermions satisfy. Table I lists the number of
zero modes we observed in a sample of 50 independent gauge configurations
as a function of µI and λI . The last two columns list the corresponding
results of Ref. [7] which are also on samples of 50 configurations but as a
function of temperature in the vicinity of the finite temperature transition
at µ = 0. While a steep fall off is seen in the latter as a function of T/Tc,
almost no variation is observed across µI for λI = 0.0006 and a mild one for
λI = 0.0025, ∼25% reduction.

TABLE I

Number of zero modes Nλ as a function of µI and λI along with corresponding
results for finite temperature from Ref. [7].

µI/µ
c
I N0.0006

zero N0.0025
zero T/Tc Nzero

0.5 426 416 1.25 18
1.5 451 310 1.5 8
— — — 2.0 1

3. Summary

We investigated the eigenvalue distribution for chirally exact Overlap
Dirac operator for µI/µcI = 0.5 and 1.5, i.e., below and above the isospin
phase transition, which is indicated [3] to be similar to the finite tempera-
ture transition in having both chiral symmetry restoration and a rise of the
Polyakov loop at the transition point. The distribution of zero and near-zero
modes is nearly the same for both at λI = 0.0006, with a 25 % reduction in
former at λI = 0.0025.

This should be contrasted with the earlier T 6= 0 results [6, 7], where
these modes were also present above the transition but decreased sharply as
one moved away from the transition. Further quantitative investigations in
pinning down the changes in these modes may help in efforts to understand
the difference in T and µI directions, if there are any.
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