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We show that the canonical approach is a promising tool to find the
critical point of the QCD phase both in the experimental study and the
lattice QCD simulations.
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1. Introduction — sign problem in the finite density QCD

One of the important objectives of the workshop “Critical Point and
Onset of Deconfinement” is to clarify the QCD phase structure at finite
temperature, T , and finite baryon number density, µ, from experiments and
lattice simulations.

The lattice simulation at finite baryon density is a very tough issue be-
cause of the sign problem: The fermion determinant det∆(µ) in the partition
function, Z, is complex if the baryon chemical potential µ is real, where Z
has the form of

Z(µ, T ) =

∫
DU(det∆(µ))Nf e−SG . (1)
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In the Monte Carlo simulations, configurations are updated with the proba-
bility P ∝ (det∆(µ))Nf e−SG . Therefore, for the real chemical potential, the
probability is a complex number and the simulation becomes impossible.

2. Canonical approach

A key formula of our study is

Z(µ, T ) =
∑
n

Zn(T )ξ
n with ξ ≡ exp(µ/T ) . (2)

The formula is neither an assumption nor a model. We can obtain Eq. (2)
as follows:

Z(ξ, T ) = Tr e−(H−µN̂)/T =

+Nmax∑
n=−Nmax

〈n|e−H/T |n〉eµn/T =

+Nmax∑
n=−Nmax

Zn(T )ξ
n ,

(3)
where

Zn = 〈n| exp(−H/T )|n〉 . (4)

Here, we assume that the number operator N̂ commutes with H, that is,
N̂ is a conserved quantity. Z and Zn are the grand canonical partition func-
tion and the canonical partition function, respectively. Both are a function
of the system volume.

Note that Zn do not depend on µ, therefore, formula (2) is valid for
any µ, i.e., not only the real number, but also the pure imaginary and the
complex numbers.

3. Results

3.1. Experimental data

Suppose a system is described by the grand partition function, Z(µ, T ),
of the temperature T and chemical potential µ. Then the formula

Z(µ, T ) =
∑
n

Zn(T )ξ
n (5)

means that the probability to find a net multiplicity n is proportional to
Zn(T )ξ

n, i.e.,
Pn = Znξ

n/Z , P−n = Z−nξ
−n/Z . (6)

From the CP invariance, we can impose Zn = Z−n. Then√
PnP−n = Zn/Z . (7)

Therefore, from the experimental net-multiplicity data, we can construct Zn.
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Once we have Zn from formula (5), we can calculate Z(µ, T ) at any µ.
Further, the nth moments, λn = (T∂/∂µ)n logZ = (ξ∂/∂ξ)n logZ are easily
estimated.

In references [1] and [2], the net-proton multiplicities were reported for
searching the critical point. The proton number is not a conservative quan-
tity, but we consider it as a proxy of the net-baryon multiplicity.

Once we have Zn, it is straightforward to calculate the moments λk.
In Fig. 1, we show the ratio of two moments, λ4 and λ2, which is related
to kurtosis, for 19.6 and 200 GeV. Details of the analysis are described in
Ref. [3] where the method to estimate error bars is explained.

Freeze-out points in Fig. 1 stand for a point where the fire-ball is created
in (µ, T ) plane. The canonical partition functions, Zn(T ), are determined
from the experimental data on this point and we can predict Z(µ/T, T ) at
different µ/T values with the same T .
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Fig. 1. The ratio of the moments λ4 and λ2, which corresponds to κσ2/T 2 as a
function of µ/T for

√
sNN = 19.6 GeV and 200 GeV. Here, κ and σ2 are the kurtosis

and the variance, respectively. They are calculated from Zn which is constructed
from the net-proton multiplicities at RHIC [1] and [2].

3.2. Lattice QCD analysis

In the lattice QCD simulation, there are three methods to calculate the
canonical partition functions, Zn:

— The fermion determinant can be expanded as the fugacity polynomial,
det∆(µ) =

∑
n cnξ

n. We insert this into Eq. (1), and obtain for-
mula (2). We can reduce the CPU time and the memory by using a
so-called reduction formula [4].
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— When the chemical potential is pure imaginary, µ = iµI , the fermion
determinant is real, and the canonical partition functions are obtained
by the following formula [5]:

Zn =

+π∫
−π

dθ

2π
einθZ

(
θ ≡ µI

T

)
. (8)

— Wilson fermion has the form of ∆ = I − κQ and allows the hopping
parameter expansion

det(I − κQ(µ)) = expTr log(I − κQ) = exp

(
−Tr

∑
n

κn

n
Qn

)
.

From this expression, we can construct Eq. (2). See “Algorithm 1
Winding Numbers via Hopping Parameter Expansion” in Ref. [6].

Here, we use the first method to calculate Zn shown in Fig. 2 for T/Tc =
1.04, 1.01 and 0.99. The lattice size is 83×4, and we use the Iwasaki improved
gauge action and the clover Wilson fermions. In Fig. 3, we show λ4/λ2,
constructed from Zn in Fig. 2.
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Fig. 2. Canonical partition functions, Zn, obtained by the lattice QCD simulations
for T/Tc = 1.04, 1.01 and 0.99. (β = 1.89, 1.87 and 1.85, respectively.)

Above Tc, λ4/λ2 is almost monotonous as µ/T increases, since we do not
hit the transition line there. On the contrary, below Tc it decreases, which
may suggest we are reaching the transition line.
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Fig. 3. The ratio of the moments λ4 and λ2 as a function of µ/T for the lattice
QCD simulations for T/Tc = 1.04, 1.01 and 0.99.

4. Concluding remarks

In this report, we show that the canonical partition functions, Zn, can be
calculated both from experimental net multiplicity and by the lattice QCD
simulations. This is, we hope, an important step towards searching the QCD
phase diagram and the critical point, but we still have to complete several
steps to go further:

— It is interesting to apply this method to the net-charge multiplicity.
We can compare experimental results and the lattice calculation.

— We will study the second (pure imaginary chemical potential) and
third (hopping parameter expansion) methods for calculating Zn, and
see if we can get more reliable Zn for large n.

— The lattice calculation here is still on a small lattice with heavy quarks.
More realistic simulations will provide us with data that can be com-
pared with experiments.

The work was completed due to support of the RSF grant 15-12-20008.
The calculations were done on SX-ACE, at the Osaka University.
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