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WOUNDED QUARKS AT THE LHC∗
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We review the results of the wounded-quark model with a stress on
eccentricity observables in small systems. A new element is a presentation
of symmetric cumulants for the elliptic and triangular flow correlations,
obtained in the wounded-quark approach.
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This paper is largely based on [1] where more details and results can be
found. Historically, the wounded-quark model [2–5] was introduced shortly
after the phenomenological success of wounded-nucleon model [6]. The ap-
proach stems from the Glauber model [7] adapted to inelastic production [8].
Our results contribute to the on-going discussion on the nature of the initial
stages of the ultra-relativistic collision and the relevant degrees of freedom
taking part in the early production of entropy/energy in the fireball: Are
these nucleons, quarks, partons, random fields, gluonic hot-spots? As the
combinatorics of the production depends on the number of constituents,
showing in the dependence of the particle production on centrality, it offers
a possibility to assess the number of active constituents without a detailed
reference to their physical nature.

In [9], it was noticed that the RHIC data can be explained within a
wounded-quark model, where the linear scaling dNch

dη ∼ QW is used, with QW

denoting the number of wounded quarks. The model was further advocated
by the PHENIX Collaboration [10, 11]. The wounded-quark scaling also
works for the SPS [12]. More recent development in this direction can be
found in [10,11,13–17].
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Modeling at the subnucleonic level allows for examination of p + p col-
lisions with the techniques typically used for larger systems. In Fig. 1, we
show eccentricities resulting from the wounded quarks in fireballs formed in
p+p collisions at the LHC. We note that both the ellipticity and triangularity
are large, hence may lead to substantial harmonic flow, in accordance to the
collectivity mechanism expected for collisions of small systems [18–21] with
sufficiently high multiplicity. The two sets of curves, thinner and thicker,
correspond to two values of the source smearing parameter [1]. We note
that the eccentricities do not strongly depend on the number of produced
particles (centrality), which shows that they originate from fluctuations and
not the geometry of the collision.
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Fig. 1. Ellipticity ε2 (solid lines) and triangularity ε3 (dotted lines) of the fireball in
p+p collisions at

√
s = 7 TeV. The thin and thick lines correspond to the Gaussian

smearing parameter σ = 0.4 fm and 0.2 fm, respectively. The eccentricities are
plotted as functions of the mean charged multiplicity at |η| < 2.4.

As a new result of the simulations in the wounded-quark model as im-
plemented in [1], we present the ellipticity–triangularity correlations. We
use the measure in the form of a symmetric cumulant, as introduced by the
ALICE Collaboration [22]

SC(a, b)

〈a2〉 〈b2〉
=

〈
a2b2

〉
−
〈
a2
〉 〈
b2
〉

〈a2〉 〈b2〉
. (1)

As for a given reaction, the elliptic and triangular flow coefficients are
roughly proportional to the corresponding eccentricities

vn ' κ(n, c)εn , n = 2, 3 , (2)
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with c indicating centrality, one obtains the approximate relation

SC(v2, v3)〈
v22
〉 〈
v23
〉 ' SC(ε2, ε3)〈

ε22
〉 〈
ε23
〉 , (3)

where the dependence on κ(n, c) has been canceled out.
The results for Pb+Pb collisions at the LHC are presented in Fig. 2. We

note that the predictions from the wounded-nucleon and wounded-quark
models are similar to each other and follow the trend of the data [22], in-
dicated with points. The negative sign and the fall-off with centrality are
properly reproduced.
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Fig. 2. The correlation between the elliptic and triangular eccentricities for Pb+Pb
collisions at the LHC, expressed via the symmetric cumulant. The lines indicate
the calculations in the wounded-nucleon and wounded-quark models, whereas the
points correspond to the ALICE data [22].

The predictions for small systems are shown in Fig. 3. We also plot there
the standard Pearson’s correlation coefficient

ρ(a, b) =
〈ab〉 − 〈a〉〈b〉√

(〈a2〉 − 〈a〉2)(〈b2〉 − 〈b〉2)
. (4)

For p+Pb and d+Au reactions, the coefficient ρ(ε2, ε3) follows closely the
symmetric cumulant measure, whereas for p + p collision it is substantially
different. Such correlations as displayed in Fig. 3, which are large in the con-
sidered approach, may be checked in future data analyses of flow correlations
in small systems.



516 W. Broniowski, P. Bożek, M. Rybczyński

η/dchdN
5 10 15 20 25 30

co
rr

el
at

io
n

0.3−
0.2−
0.1−

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

)3∈,
2

∈(ρ

>)2
3∈><2

2∈)/(<3∈,2∈SC(

d+Au@200GeV

Fig. 3. Predictions for the correlation measures between the elliptic and triangular
eccentricities in small systems, obtained from the wounded-quark model for three
sample reactions.
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