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We study frequency dependencies in the renormalization of the fermion
Green function for the π-band electrons in graphene and their influence
on dynamical gap generation at sufficiently strong interaction. We use
the effective QED-like description for the low-energy excitations within the
Dirac-cone region and self consistently solve the fermion Dyson–Schwinger
equation using different approximations for the photon propagator and
the vertex function. We specifically study frequency-dependent Lindhard
screening and retardation effects.
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1. Introduction

Graphene is a 2-dimensional crystal of carbon atoms which exhibits inter-
esting quantum effects and some unique electronic properties. We consider
the simplest form, mono-layer graphene at half filling (zero chemical poten-
tial). The carbon atoms are arranged in a 2-dimensional hexagonal lattice
and the low-energy dynamics is described by a continuum quantum field
theory in which the electronic quasi-particles have a linear Dirac-like disper-
sion relation of the form of E = ±vFp, where vF ∼ c/300 is the velocity of
a massless electron in graphene. The effective coupling is α = e2/(4πε~vF),
where ε ≤ 1 is related to the physical properties of the graphene sheet. Since
vF ∼ c/300, the system is strongly coupled and non-perturbative methods
must be used. The maximum possible effective coupling is obtained with
the vacuum value ε = 1 and is about αmax = 2.2.

An important question is whether or not the quasi-particle interactions
are strong enough to produce a gap and cause the system to undergo a
phase transition to an insulating state. Measurements of the conductivity of
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suspended graphene have shown that the insulating state is not physically
realizable [1]. However, the experimental observation of fairly strong Fermi
velocity renormalization effects indicate that it might be possible to induce
a transition via magnetic catalysis [2].

We use the effective QED-like description for the low-energy excitations
within the Dirac-cone region, which does not take into account physical
screening effects. Within this description however, we go beyond the non-
relativistic Coulomb interaction and systematically investigate the various
frequency dependencies including retardation effects.

The Euclidean action of the low-energy effective theory is given by

S =

∫
d3x

∑
a

ψ̄a (i∂µ − eAµ)Mµνγνψa

− ε

4e2

∫
d3xFµν

1

2
√
−∂2

Fµν + gauge fixing ,

where the Greek indices take values ∈ {0, 1, 2}. Four-component Dirac
spinors represent quasi-particle excitations on both sub-lattices, with mo-
menta close to either of the two Dirac points. The true spin of the electrons
formally appears as an additional flavour quantum number, and we take
Nf = 2 for monolayer graphene. The three 4-dimensional γ-matrices form a
reducible representation of the Clifford algebra {γµ, γν} = 2δµν in 2+1 di-
mensions. M is a diagonal 3×3 matrix defined M = (1, vF, vF)diag. Lorentz
invariance is explicitly broken by the presence of this matrix with vF 6= 1.
The gauge field action is non-local because the photon which mediates the
interactions between the electrons propagates out of the graphene plane, in
the bulk of the 3+1 dimensional space-time [2, 3].

We use self-consistently calculated fermion dressing functions but a one-
loop photon polarization tensor calculated with bare lines. The vanishing of
the density of states at the Dirac points makes this a reasonable approxima-
tion. We include vertex corrections (using an Ansatz which is constructed to
preserve gauge invariance). A complete description of how our calculation
is related to previous non-relativistic approaches can be found in [4].

2. Notation

We use the notation Qµ = (q0, ~q ), Q2 = q20 + q2,
∫

dQ =
∫ dq0 d2q

(2π)3

and similarly for the momenta P and K = P − Q. The fermion propaga-
tor contains three dressing functions which we call Z(p0, ~p ), A(p0, ~p ) and
∆(p0, ~p ). Defining the diagonal 3×3 matrix A(p0, ~p ) = (Z(p0, ~p ), A(p0, ~p ),
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A(p0, ~p ))diag, the inverse fermion propagator has the form of

S−1(P ) = S−1
0 (P ) +Σ(P ) = −iγµAµν(p0, ~p )MντPτ +∆(p0, ~p ) ,

Σ(P ) = e2
∫

dKGµν(q0, ~q )MµτγτS
(
k0,~k

)
Γν . (1)

In Landau gauge, the photon propagator is

Gµν =
P 1
µν

GT(q0, ~q )
+ P 3

µν

(
1

GL(q0, ~q )
− 1

GT(q0, ~q )

)
,

GT(q0, ~q ) = 2
√
Q2+α(q0, ~q ) , GL(q0, ~q )=2

√
Q2+α(q0, ~q )+γ(q0, ~q ) ,

(2)

where we have used

P 1
µν = δµν −

QµQν
Q2

, P 3
µν =

Q2

q2

(
δ0µ −

q0Qµ
Q2

)(
δ0ν −

q0Qν
Q2

)
,

α(q0, ~q ) = απvF

√
q20 + v2Fq

2 , α(q0, ~q ) + γ(q0, ~q ) =
απvFQ

2√
q20 + v2Fq

2
. (3)

In order to preserve the gauge invariance, we define a non-covariant ex-
tension of the Ball–Chiu vertex [5]

Γµ=
1

2
Mµτ

(
Aτν(p0, ~p ) + Aτν

(
k0,~k

))
γν

+

[
1

2
(Pσ+Kσ)Mστ

(
Aτν(p0, ~p )−Aτν

(
k0,~k

))
γν+i

(
∆(p0, ~p )−∆

(
k0,~k

))]
×(Pµ +Kµ)

P 2 −K2
(4)

which satisfies the Ward identity −iQµΓµ = S−1(p0, ~p )−S−1(k0,~k ). Using
this vertex in (1) is what we call the BALL–CHIU calculation. Simpler
expressions are obtained if we use only the first term in the Ball–Chiu vertex.
We call this the SHORT calculation.

A further approximation is to expand simultaneously in {vF, q0/q} ∼ δ.
The expansion in q0/q is motivated by the fact that the photons that me-
diate the Coulomb interaction move much more quickly than the electrons,
and, therefore, the interaction can be taken to be almost instantaneous.
In this approximation, the transverse modes drop out and the longitudinal
part of the propagator is replaced with the Coulomb propagator G−1

00 =
2q+Π00(q0, q). We refer to this as the COULOMB calculation. It was done
previously in Ref. [6]. We will also compare it with an early calculation in
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the literature [7] that used much more restrictive assumptions: bare vertices,
no magnetic modes, frequency independent fermion dressing functions, and
the instantaneous approximation.

The integral equations that determine the dressing functions in the
SHORT calculation are

Zp = 1− 2απvF
p0

∫
dK

k0q
2ZkZs

Q2GLSk
, (5)

Ap = 1 +
2απvF
p2

∫
dK

q2AkZs~k · ~p+ k0q0Zk(Zs +As)~p · ~q
Q2GLSk

, (6)

Dp = 2απvF

∫
dK

q2∆kZs
Q2GLSk

, (7)

where we have defined Zp = Z(p0, ~p ), Zs = Zp+Zk, Zd = Zp−Zk, etc. and
GL = GL(q0, ~q ) and Sk = k20Z

2
k + k2A2

kv
2
F +∆2

k. The analogous expressions
for the COULOMB and BALL–CHIU calculations are given in [4].

3. Results

To do the momentum integrals, we introduce an ultra-violet cut-off Λ
and use a logarithmic scale. We define dimensionless variables k̂0 = k0/Λ,
p̂0 = p0/Λ, k̂ = k/Λ, p̂ = p/Λ and ∆̂ = ∆/Λ. The hatted frequency and
momentum variables range from zero to one, and all hats are suppressed
from this point. In Fig. 1 (top), we show the gap versus α for four different
calculations. We fit this data and the resulting function is extrapolated to
obtain the value of the critical coupling for which the gap goes to zero. The
critical coupling can also be obtained from a bifurcation analysis. The results
are shown in Table I. The BALL–CHIU and SHORT calculations agree well,
while the COULOMB calculation gives a slightly smaller critical coupling.
The frequency-independent calculation gives a significantly larger result than
the calculations which take into account the frequency dependence of the
dressing functions. In all cases, the result is bigger than the largest physically
realizable coupling αmax ∼ 2.2.

In Fig. 1 (bottom), we show the renormalized Fermi velocity, which is
defined as A(p0, p)/Z(p0, p), as a function of momentum. The increase in
the Fermi velocity at small coupling which is observed experimentally is
clearly seen.
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Fig. 1. Numerical results for the gap and renormalized fermion velocity. Top: ∆(0)

versus α; Bottom: A(0, p)/Z(0, p) versus p.

TABLE I

Results for critical values of the coupling α.

Calculation αc Bifurcation range

ω-independent 8.967
COULOMB 2.906 2.900–2.899
SHORT 3.190 3.190–3.191
BALL-CHIU 3.178

4. Conclusions

We have done a calculation of the dynamically generated gap in mono-
layer suspended graphene, starting from a low-energy effective field the-
ory. Our calculations contain three effects that have not previously been
included: vertex corrections, magnetic effects and full frequency dependence
in dressing functions and loop integrals. The precise numerical values of
the critical couplings that we obtain are not meant to be realistic, since
they will clearly be changed (in a predictable manner) by short distance
screening effects which we have not included. However, attempts to include
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realistic interactions on the honeycomb lattice have usually been done in
static approximations or dynamical mean field theory [8]. Both approaches
work towards the final goal of a calculation that includes both frequency-
dependent effects and realistic screening, from complementary directions.
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