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We discuss the elastic qq cross sections at finite chemical potential in
the Nambu–Jona-Lasinio model. We comment the generic features of the
cross sections as functions of the chemical potential, temperature and col-
lision energy. Finally, we discuss their relevance in the construction of a
relativistic transport model for heavy-ion collisions based on this effective
Lagrangian.
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1. Introduction

One of the most widely used low-energy realizations of quantum chro-
modynamics (QCD) for the quark degrees of freedom is the Nambu–Jona-
Lasinio (NJL) model [1–5]. In this effective model, one considers only dy-
namical quarks which exchange small momenta in their interaction, whereas
gluons are integrated out. This model shares the global symmetries of QCD,
and it is able to describe the phenomenon of spontaneous symmetry breaking
and its high-temperature/density restoration. In particular, the local version
of the model (where quarks interact locally in space through a four-point
interaction) has the property of simplicity and transparency, as opposed
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to other more complicated approximations to QCD. In addition, the NJL
model has a straightforward extension to finite temperatures and densities,
allowing for the study of different areas of the QCD phase diagram.

We consider the Lagrangian of the NJL model with (color neutral) pseu-
doscalar and scalar interactions (neglecting the vector and axial-vector ver-
tices for simplicity) [6]

LNJL =
∑
i

ψ̄i(i/∂ −m0i + µiγ0)ψi

+G
∑
a

∑
ijkl

[(
ψ̄i iγ5τ

a
ijψj

) (
ψ̄k iγ5τ

a
klψl

)
+
(
ψ̄iτ

a
ijψj

)
(ψ̄kτ

a
klψl)

]
−K det

ij

[
ψ̄i (I− γ5)ψj

]
−K det

ij

[
ψ̄i (I + γ5)ψj

]
, (1)

where the flavor indices i, j, k, l = 1, 2, 3 and τa (a = 1, . . . , 8) are the Nf = 3
flavor generators with normalization

trf
(
τaτ b

)
= 2δab , (2)

with trf denoting the trace in flavor space. In Lagrangian (1), the bare
quark masses are represented by m0i and their chemical potential by µi.
The coupling constant for the scalar and pseudoscalar interaction G is taken
as a free parameter (fixed e.g. by the pion mass in vacuum). The third term
of Eq. (1) is the so-called ’t Hooft Lagrangian, which mimics the effect of
the axial U(1) anomaly, accounting for the physical splitting between the η
and the η′ meson masses. K is an unknown coupling constant (fixed by the
value of mη′ −mη) and I is the identity matrix in Dirac space. As the NJL
model is non-renormalizable, it requires also an ultraviolet regulator, which
we introduce in the form of a cutoff Λ.

This Lagrangian has been widely used to study strongly interacting sys-
tems in the vacuum and at finite temperature. In the present calculation,
we employ the following parameters, determined by vacuum meson masses
and decay constants, see Table I. For all details, we refer to the above re-
views [1–5].

TABLE I

Parameters used in the calculation and the critical chemical potential µcrit, where
the chiral restoration occurs as a second-order phase transition.

Λ G K m0u m0s µcrit

569 MeV 2.3/Λ2 11/Λ5 5.5 MeV 134 MeV 338 MeV
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2. A transport theory based on the NJL Lagrangian

After experiments have confirmed that in heavy-ion reactions at ultra-
relativistic energies for a very short time a quark–gluon plasma (QGP) is
created, the study of the properties of the QGP is presently the key challenge
for all these experiments. These plasma properties show up only very indi-
rectly in the experimental observables and, therefore, theoretical approaches
are needed which show how the measured observables are related to the prop-
erties of the plasma. These theoretical transport approaches either assume
that during the expansion the plasma is in local thermal equilibrium or that
effective degrees of freedom and cross sections can be determined from the
equation of state of the plasma which allows for describing the expansion by
the Kadanoff–Baym equations [7, 8]. The equation of state of the QGP at
vanishing baryochemical potential can be reliably calculated by lattice gauge
calculations [9,10]. Both approaches are confronted with the fact that at the
end of its expansion the QGP hadronizes. For the hadronization, only phe-
nomenological approaches are presently available and it is presently under
discussion whether strange hadrons hadronize earlier.

In this situation, it is challenging to develop a transport theory based on
the NJL Lagrangian. This approach has the advantage that it is based on
a Lagrangian which shares the fundamental symmetries of QCD. In addi-
tion, it has the advantage that no parametrization of the equation of state,
nor assumptions about cross sections or the hadronization have to be made.
All follows directly from the Lagrangian whose few parameters are fixed
by vacuum properties. Also the extension to finite baryon chemical poten-
tial, where lattice gauge calculation cannot presently provide guidelines, is
straightforward what is of importance in view of the upcoming experiments
at NICA and FAIR. The drawback is that the NJL Lagrangian contains
no gluons. In an extended version, the PNJL approach [11, 12], they can
be added as a mean field which assures the right thermal properties of the
plasma at large temperatures. The PNJL approach describes in a reasonable
way the lattice-QCD equation of state [13].

Such a transport theory based on the lattice equation of state has been
developed in the last years [14] and has been compared to the Parton–
Hadron-String Dynamics model for RHIC energies [15]. One of the main
ingredients of these calculations are the elastic cross sections between the
plasma constituents.

3. Quark–quark cross section

The qq and qq̄ cross sections have been calculated by Rehberg et al. [16].
Here, we report on the extension of these cross sections to finite chemical
potential. Figure 1 shows the cross section uu → uu as a function of the
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Fig. 1. uu→ uu cross section as a function of the temperature, the center-of-mass
energy for different chemical potentials µ.

temperature, the chemical potential and the center-of-mass energy
√
s. In

the region where the quarks are the degrees of freedom of the system, i.e.
beyond the hadronization temperature Thad(µ), the cross section is of the
order of ten millibarn. With increasing µ, the maximum moves to lower
temperature following the line on which the sum of the masses of then two
quarks equals that of the corresponding meson and the mesons become the
theromodynamically dominating degrees of freedom. At µcrit = 338 MeV,
the transition between the QGP and the hadronic change from a cross over to
a first order phase transition. Close to this value the cross section increases,
especially close to the critical temperature.
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4. Conclusions

We have presented our results for the qq cross sections at finite chemical
potential in the context of the NJL model. The quark–quark elastic scatter-
ing cross sections show no resonant behavior and they can take values around
' 10 mb. For increasing chemical potential, the maximum of the cross sec-
tion moves to lower temperatures. The results presented here serve as a
preliminary computation for an eventual implementation of the NJL/PNJL
model in a transport simulation for relativistic heavy-ion collisions at low
energies.

This work has been funded by the programme TOGETHER from Région
Pays de la Loire and EU Integrated Infrastructure Initiative HadronPhysics3
Project under grant agreement No. 283286. J.M.T.-R. thanks for funding
from a Helmholtz Young Investigator Group VH-NG-822 from the Helmholtz
Association and GSI, and the Project FPA2013-43425-P from Ministerio de
Ciencia e Innovación (Spain).

REFERENCES

[1] U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).
[2] S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[3] T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994).
[4] R. Alkofer, H. Reinhardt, Chiral Quark Dynamics, Lect. Notes Phys.,

Monographs, Springer, Berlin, Germany, Vol. 33, 1995, p. 114.
[5] M. Buballa, Phys. Rep. 407, 205 (2005).
[6] J.M. Torres-Rincon, B. Sintes, J. Aichelin, Phys. Rev. C 91, 065206 (2015).
[7] W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009).
[8] E.L. Bratkovskaya, W. Cassing, V.P. Konchakovski, O. Linnyk,

Nucl. Phys. A 856, 162 (2011).
[9] S. Borsanyi et al., Phys. Lett. B 730, 99 (2014).
[10] A. Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 90, 094503 (2014).
[11] C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006).
[12] H. Hansen et al., Phys. Rev. D 75, 065004 (2007).
[13] J.M. Torres-Rincon, J. Aichelin, arXiv:1601.01706 [nucl-th].
[14] R. Marty, J. Aichelin, Phys. Rev. C 87, 034912 (2013).
[15] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, Phys. Rev. C 92,

015201 (2015).
[16] P. Rehberg, S.P. Klevansky, J. Hufner, Nucl. Phys. A 608, 356 (1996).
[17] F. Gastineau, E. Blanquier, J. Aichelin, Phys. Rev. Lett. 95, 052001 (2005).

http://dx.doi.org/10.1016/0146-6410(91)90005-9
http://dx.doi.org/10.1103/RevModPhys.64.649
http://dx.doi.org/10.1016/0370-1573(94)90022-1
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1103/PhysRevC.91.065206
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.007
http://dx.doi.org/10.1016/j.nuclphysa.2011.03.003
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1103/PhysRevD.90.094503
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1103/PhysRevD.75.065004
http://dx.doi.org/10.1103/PhysRevC.87.034912
http://dx.doi.org/10.1103/PhysRevC.92.015201
http://dx.doi.org/10.1103/PhysRevC.92.015201
http://dx.doi.org/10.1016/0375-9474(96)00247-3
http://dx.doi.org/10.1103/PhysRevLett.95.052001

	1 Introduction
	2 A transport theory based on the NJL Lagrangian
	3 Quark–quark cross section
	4 Conclusions

