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1. Introduction

The standard viscous hydrodynamics is most often based on the expan-
sion of the underlying microscopic kinetic theory in the Knudsen and inverse
Reynolds numbers around the local equilibrium state [1]. This type of expan-
sion may be questioned in the situation where space-time gradients and/or
deviations from the local equilibrium are large. The goal of the anisotropic
hydrodynamics program is to create a dissipative hydrodynamics framework
that is better suited to deal with such cases and accurately describes several
features such as the early time dynamics of the quark–gluon plasma (QGP)
created in heavy-ion collisions, dynamics near the transverse edges of the
nuclear overlap region, and temperature-dependent and possibly large shear
viscosity-to-entropy density ratio: η̄ = η/s [2]. In this conference proceed-
ings, several aspects of different formulations of anisotropic hydrodynamics,
which have been recently proposed in the literature, are shortly reviewed
and compared.

2. Phenomenological vs. kinetic-theory formulation

The original concepts of anisotropic hydrodynamics were presented in
Refs. [3, 4], see also [5, 6]. The approach of [3] was based on the energy-
momentum conservation law and used an Ansatz for the entropy source
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term that defined the off-equilibrium dynamics. On the other hand, the ap-
proach of [4] was based on the kinetic theory, and employed the zeroth and
first moments of the Boltzmann kinetic equation in the relaxation time ap-
proximation (RTA) [8]. It has been soon demonstrated in [7] that these two
approaches are equivalent as the first moment of the Boltzmann equation
yields the energy-momentum conservation law, while the zeroth moment
can be interpreted as a special form of the entropy source. The two ap-
proaches referred also to the (quasi)particle picture, where the phase-space
distribution function is given by the Romatschke–Strickland form [9]. In the
covariant formulation, the latter takes the form of

fRS = exp

(
− 1

Λ

√
(p · U)2 + ξ (p · Z)2

)
, (1)

where Λ is the transverse-momentum scale, ξ is the anisotropy parameter,
while U and Z are the two four-vectors that define a simple boost-invariant
geometry, U = (t/τ, 0, 0, z/τ) and Z = (z/τ, 0, 0, t/τ) with τ =

√
t2 − z2

being the longitudinal proper time. The distribution function (1) leads to
the following form of the energy-momentum tensor:

Tµν = (ε+ P⊥)UµUν − P⊥ g
µν −

(
P⊥ − P‖

)
ZµZν , (2)

where P⊥ and P‖ are the transverse and longitudinal pressures, respectively.

3. Two expansion methods

Further developments of anisotropic hydrodynamics were based exclu-
sively on the kinetic theory and they may be classified as perturbative and
non-perturbative schemes.

In the perturbative approach [10–12], one assumes that the distribution
function has the form of f = fRS + δf , where fRS is the leading order de-
scribed by the Romatschke–Strickland form, accounting for the difference
between the longitudinal and transverse pressures, while δf represents a
correction. In this case, advanced methods of traditional viscous hydro-
dynamics are used to restrict the form of δf and to derive hydrodynamic
equations. In this way, non-trivial dynamics may be included in the trans-
verse plane and, more generally, in the full (3+1)D case.

In the non-perturbative approach, one starts with the decomposition f =
faniso+δf , where faniso is the leading order distribution function given by the
generalised RS form. In this case, all effects due to anisotropy are included
in the leading order, while the correction term δf is typically neglected. The
generalised RS form includes more parameters than the original RS Ansatz,
namely one uses the expression
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faniso = fiso

(√
pµΞµνpν

λ

)
, (3)

where λ is the transverse momentum scale, Ξµν is the anisotropy tensor
and fiso denotes the isotropic/equilibrium distribution (Boltzmann, Bose–
Einstein or Fermi–Dirac).

The structure of the generalised RS distribution as well as the cor-
responding hydrodynamic equations have been gradually worked out for:
(1+1)D conformal case [13] (with two independent anisotropy parameters),
(1+1)D non-conformal case [14] (with two anisotropy parameters and one
bulk parameter), and full (3+1)D case [15, 16] (five anisotropy parameters
included in the tensor ξµν and one bulk parameter Φ). In the latter case,
one uses the parameterisation

Ξµν = uµuν + ξµν −∆µνΦ ,

uµξ
µν = 0 , ξµµ = 0 . (4)

Here, ∆µν = gµν −UµUν is the operator projecting on the space orthogonal
to the flow vector Uµ. The second line in (4) indicates that the symmetric
tensor ξµν is orthogonal to Uµ and traceless, thus has indeed five indepen-
dent parameters. These properties are similar to those characterising the
shear stress tensor πµν commonly used in the formalism of the standard
dissipative hydrodynamics. As a matter of fact, πµν becomes proportional
to ξµν for systems approaching local equilibrium. Similarly, in this case, the
parameter Φ becomes proportional to the bulk viscous pressure Π.

To derive the hydrodynamic equations obeyed by the parameters ξµν
and Φ, one most often uses the moments of the RTA Boltzmann equation.
The number of included moments corresponds to the number of unknown
parameters. An alternative for this approach is the procedure where one first
derives, directly from the RTA Boltzmann equation, the equations for the
pressure corrections πµν and Π, and expresses them by the function faniso.
This is the latest development for the leading order, known as the anisotropic
matching principle [17], that may be supplemented by next-to-leading terms
following the perturbative approach [10,11].

4. Anisotropic vs. standard dissipative hydrodynamics

4.1. Comparisons with the exact solutions of the kinetic equation

Anisotropic and viscous hydrodynamics predictions have been checked
against exact solutions available for the Boltzmann kinetic equation in the
relaxation time approximation [18, 19]. Such studies have been done for
the one-dimensional Bjorken geometry [20–22] and for the Gubser flow that
includes transverse expansion [23, 24]. The results of those studies showed
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that anisotropic hydrodynamics better reproduces the results of the under-
lying kinetic theory than the standard viscous hydrodynamics. In addition,
important constraints on the structure of the hydrodynamic equations and
the form of the kinetic coefficients have been obtained within such studies.

4.2. Gradient expansion

Another way of comparing between different theories, in particular, be-
tween different formulations of dissipative hydrodynamics is the study of
their formal gradient expansion. The latter is an effective way to quantify
the system’s approach to equilibrium and to collect information about the
non-hydrodynamic sector. This is attainable by considering perturbations
around the perfect-fluid hydrodynamic solution.

Recently, the gradient expansion has been studied for anisotropic hydro-
dynamics, its underlying kinetic theory in the relaxation time approxima-
tion, and for different formulation of standard viscous hydrodynamics [25].
It has been found that the formulation of anisotropic hydrodynamics based
on the anisotropic matching principle [17] yields the first three terms of
the gradient expansion in agreement with those obtained for the kinetic the-
ory [26]. This finding gives further support for this particular hydrodynamic
model as a good approximation of the kinetic theory framework. It has been
further found that the gradient expansion of anisotropic hydrodynamics is
an asymptotic series, and the singularities of the analytic continuation of its
Borel transform indicate the presence of non-hydrodynamic modes.

4.3. Far off-equilibrium behaviour

In one of the recent works [27], a comparison of the far off-equilibrium
behaviour described by different hydrodynamics models have been analysed
in the context of non-boost invariant expansion. It has been found that the
results of anisotropic hydrodynamics and viscous hydrodynamics agree for
the central hot part of the system, however, they differ at the edges where
the approach of anisotropic hydrodynamics helps to control the undesirable
growth of viscous corrections observed in standard frameworks.

5. Summary

In this work, we have shortly discussed several approaches to anisotropic
hydrodynamics. We summarise with the statement that it offers a plausible
alternative to more standard viscous hydrodynamics approaches. In many
cases, anisotropic hydrodynamics describes more accurately the results ob-
tained with underlying kinetic theory. It also eliminates several deficiencies
of the standard approaches such as, for example, negative pressures or un-
controlled entropy production growth with increasing shear viscosity.
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