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We discuss the critical properties of net-baryon-number fluctuations at
the chiral restoration transition in matter at non-zero temperature and net-
baryon density. The chiral dynamics of quantum chromodynamics (QCD)
is modeled by the Polykov-loop extended Quark–Meson Lagrangian, that
includes the coupling of quarks to temporal gauge fields. The Functional
Renormalization Group is employed to account for the criticality at the
phase boundary. We focus on the ratios of the net-baryon-number cumu-
lants, χn

B , for 1 ≤ n ≤ 4. The results are confronted with recent experi-
mental data on fluctuations of the net proton number in nucleus–nucleus
collisions.
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1. Introduction

Lattice QCD (LQCD) results imply that at vanishing and small values
of baryon chemical potential, µB, strongly interacting matter undergoes a
smooth crossover transition from the hadronic phase to the quark–gluon
plasma, where the spontaneously broken chiral symmetry is restored [1, 2].
The order of the transition in the limit of massless u and d quarks is a subtle
issue, and still under debate [3]. Here, we assume that the transition in this
limit is second order, belonging to the O(4) universality class. Owing to the
sign problem, the nature of the transition at higher net-baryon densities is
not settled by first principle LQCD studies. However, in effective models of
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QCD, it is found that, at sufficiently large µB, the systems can exhibit a first
order chiral phase transition. The endpoint of this conjectured transition
line in the (T, µB)-plane is the chiral critical point (CP) [4, 5]. At the CP,
the system exhibits a 2nd order phase transition, which belongs to the Z(2)
universality class [6].

Due to the restriction of present LQCD calculations to small net-baryon
densities, effective models that belong to the same universality class as QCD,
e.g., the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) [7–9] and
Quark–Meson (PQM) models [10–15], have been employed to study the chi-
ral phase transition for a broad range of thermal parameters.

One of the strategic goals of current experimental and theoretical studies
of chiral symmetry restoration in QCD is to unravel the phase diagram of
strongly interacting matter and to clarify whether a chiral CP exists. A dedi-
cated research program at RHIC, the beam energy scan, has been established
to explore these issues in collisions of heavy ions at relativistic energies [16].
By varying the beam energy at RHIC, the properties of strongly interacting
matter in a broad range of net-baryon densities, corresponding to a wide
range in baryon chemical potential, 20 MeV < µB < 500 MeV [17, 18], can
be studied. To study the phase structure, the fluctuations of conserved
charges have been proposed as probes [19–23]. These are experimentally
accessible and reflect the criticality of the chiral transition.

First data on net-proton-number fluctuations, which are used as a proxy
for fluctuations of the net baryon number, have been obtained in heavy-
ion collisions by the STAR Collaboration at RHIC energies [24–26]. The
STAR data on the variance, skewness and kurtosis of net proton number,
are intriguing and have stimulated a lively discussion on their physics origin
and interpretation [27].

In the following, we focus on the properties and systematics of the cumu-
lants of net-baryon-number fluctuations near the chiral phase boundary. Our
studies are performed in the Polykov-loop extended Quark–Meson model
which includes coupling of quarks to temporal gauge fields. To account for
the O(4) and Z(2) critical fluctuations near the phase boundary, we employ
the Functional Renormalization Group (FRG) [28–30]. We present results
for ratios of cumulants obtained on the phase boundary and on a freeze-out
line determined by fitting the skewness ratio, following [31, 32]. These are
confronted with the corresponding experimental values of the STAR Collab-
oration.

2. The Polyakov Quark–Meson model

The PQM model is a low-energy effective approximation to QCD for-
mulated in terms of the light quark q = (u, d) as well as scalar and the
pseudoscalar meson φ = (σ, ~π) fields. The quarks are coupled to the back-
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ground Euclidean gluon field Aµ, with vanishing spatial components, which
is linked to the Polyakov loop

Φ =
1

Nc

〈
TrcP exp

i β∫
0

dτA0

〉 . (1)

The resulting Lagrangian of the model reads

L = q̄ (iγµDµ − g(σ + iγ5~τ~π)) q + 1
2 (∂µσ)2 + 1

2 (∂µ~π)2

−Um(σ, ~π)− U(Φ, Φ̄;T ) , (2)

where Dµ = ∂µ − iAµ. The parameters of the mesonic potential

Um(σ, ~π) =
λ

4

(
σ2 + ~π2

)2
+
m2

2

(
σ2 + ~π2

)
−Hσ (3)

are tuned to vacuum properties of the σ and ~π mesons. We use the Polyakov-
loop potential U(Φ, Φ̄;T ) determined in [33].

We compute the thermodynamics of this model, including fluctuations
of the scalar and pseudoscalar meson fields within the framework of the
FRG method. The Polyakov loop is treated on the mean-field level. Its
value is tuned such that a stationary point of the thermodynamic potential
is reached at the end of the RG calculation.

In the FRG framework, the effective average action Γk, which inter-
polates between the classical and the full quantum action, is obtained by
solving the renomalization group flow equation [28]

∂kΓk[φ] = 1
2Tr

[(
Γ

(2)
k [φ] +Rk

)−1
∂kRk

]
, (4)

where φ denotes the quantum fields considered, Tr is a trace over the fields,
over momentum and over all internal indices. The regulator function Rk
suppresses fluctuations at momenta below k. Thus, effects of fluctuations
of quantum fields are included shell-by-shell in momentum space, starting
from a UV cutoff scale Λ. We employ the optimized regulator introduced
by Litim [34]. Details of the calculation can be found in [32].

3. Net-baryon-number cumulants and the phase boundary

The chiral Lagrangian introduced above shares the chiral critical proper-
ties with QCD. In particular, at moderate values of the chemical potential,
the PQM model exhibits a chiral transition belonging to the O(4) universal-
ity class. For larger values of µ, it reveals a Z(2) critical endpoint, followed
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by a first order phase transition [6]. Consequently, the PQM model embod-
ies the generic phase structure expected for QCD, with the universal O(4)
and Z(2) criticality encoded in the scaling functions. Furthermore, due to
the coupling of the quarks to the background gluon fields, the PQM model
incorporates “statistical confinement”, i.e., the suppression of quark and di-
quark degrees of freedom at the low temperatures, in the chirally broken
phase [7]. Consequently, by studying fluctuations of conserved charges in
the PQM model, one can explore the influence of chiral symmetry restora-
tion and of “statistical confinement” on the cumulants in different sections
of the chiral phase boundary. The baryon and quark number cumulants of
the order of n, χnB and χnq , and the baryon-number cumulant ratios, χn,mB ,
are defined as

χnB =
χnq
3n

=
1

3nT 4−n
∂nΩ(T, µq)

∂µnq
, χn,mB =

χnB(T, µB)

χmB (T, µB)
. (5)

In the following, we focus on ratios of net-baryon-number susceptibilities
that can be related to experimentally measurable quantities

χ1,2
B (T, µB) = M/σ2 , χ3,1

B (T, µB) = SBσ
3/M , χ4,2

B (T, µB) = κσ2 ,
(6)

where M is the mean, σ the variance, SB the skewness and κ the kurtosis
of the net-baryon-number distribution.

At vanishing chemical potential, all odd susceptibilities of the net baryon
number vanish, owing to the baryon–antibaryon symmetry. In addition, in
the O(4) universality class, the second and fourth order cumulants remain
finite at the phase transition temperature at µq = 0 in the chiral limit,
implying that only sixth and higher order susceptibilities diverge. Thus,
for physical quark masses, only higher order cumulants, χnB with n > 4,
can exhibit O(4) criticality at µq = 0 [23]. A further consequence of the
baryon–antibaryon symmetry is the equality of the ratios

χ2m−1,2n−1
B = χ2m,2n

B (7)

for any integer m and n ≥ 1 at µq = 0. For χ3,1
B and χ4,2

B , the equality at
small µq can also be seen by comparing the right panel of Fig. 1 to the left
panel of Fig. 2.

At finite net-baryon density, the singularity at the O(4) critical line is
stronger than at µq = 0. Thus, in this case the third order cumulant and all
higher order ones diverge at the O(4) line. The second order cumulant χ2

B
remains finite, and diverges at the tricritical point and for non-zero quark
masses, at the CP.
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Fig. 1. Contour plots of the ratios χ1
B/χ

2
B and χ3

B/χ
1
B in the (T, µq)-plane, com-

puted in the PQM model. The broken lines indicate the location of the chiral
crossover phase boundary.
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Fig. 2. Left: contour plot of the kurtosis ratio, χ4
B/χ

2
B , in the (T, µq)-plane.

Right: temperature dependence of ratios of net-baryon-number cumulants,
χ3
B/χ

1
B = χ4

B/χ
2
B in the PQM model at µq = 0.

In Fig. 1, we show contour plots of the ratios χ1,2
B and χ3,1

B in the (T, µq)
plane. As noted above, all odd cumulants vanish at µq = 0. Consequently,
χ1,2
B |µq=0 = 0 for any T , while the ratio χ3,1

B |µq=0 is non-vanishing. As
indicated in Fig. 1, the ratio χ3,1

B decreases with temperature, and depends
weakly on the chemical potential. Thus, the ratio χ3,1

B can be used as a
measure of the temperature.

In Fig. 2, we show contour plots of the ratios χ4,2
B and results on the tem-

perature dependence of the ratio χ3,1
B = χ4,2

B of net-baryon-number suscep-
tibilities at µq = 0, together with the variance of the chiral condensate, χch.
The location of the maximum of the chiral susceptibility, χch, defines the
pseudo-critical temperature, Tc.
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At small µq/T , the properties of the first four susceptibilities, χnB with
n = 1, . . . , 4, and consequently their ratios, near the chiral crossover are
dominantly affected by the coupling of the quarks to the Polyakov loop, and
the resulting statistical confinement. The critical chiral dynamics, i.e. the
O(4) and Z(2) criticality at the chiral crossover transition and at the CP,
respectively, unfolds at larger µ/T . Near the CP, there is a strong variation
of the cumulants with T and µq, which increases with the order of cumulants.

4. Net-baryon cumulant ratios and freeze-out
in heavy-ion collisions

In heavy-ion collisions, the thermal fireball formed in the quark–gluon
plasma phase undergoes expansion and passes through the QCD phase
boundary at some point (µq, T ), which depends on the collision energy,

√
s.

Analysis of ratios of particle multiplicities indicate that at high-beam ener-
gies (small values of µq/T ), the freeze-out occurs at or just below the phase
boundary. Thus, the beam energy dependence of net-baryon-number sus-
ceptibilities can provide insight into the structure of the QCD phase diagram
and information on the existence and location of the CP. Consequently, it
is of phenomenological interest to compute the properties of fluctuations of
conserved charges along the chiral phase boundary. Since there, the criti-
cal structure and the relations between different susceptibilities are by and
large governed by the universal scaling functions, the generic behavior of
ratios of net-baryon-number susceptibilities can be explored also in model
calculations.

A comparison of results obtained in the PQM model with data requires
a correspondence between the collision energy

√
s and the thermal param-

eters (µq, T ). Here, we employ the phenomenological relation, obtained by
analyzing the freeze-out conditions in terms of the hadron resonance gas
model (HRG) [17, 18]. We then use the resulting dependence of µB and T
on
√
s to assign a value for the ratio µq/T to each of the STAR beam en-

ergies. We note that, for µq/T < 1, the phenomenological freeze-out line
coincides within errors with the crossover phase boundary obtained in lattice
QCD [2, 36]. This motivates a comparison of model results on net-baryon-
number fluctuations near the phase boundary with data. A similar analysis
was first done using LQCD results in Ref. [31].

In Fig. 3, we show the STAR data on net-proton-number susceptibil-
ity ratios and the corresponding PQM model results on net-baryon-number
fluctuations computed along the phase boundary. The model results for the
ratios χ1,2

B , χ3,1
B and χ3,2

B are in qualitative agreement with the data in the
whole energy range. For the kurtosis ratio, χ4,2

B , this is the case also up to
the SPS energy, i.e., for

√
s ≥ 20 GeV. However, for µq/T > 0.5, the data
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on the kurtosis ratio exhibits a qualitatively different dependence on µq/T
than expected for the critical behavior of χ4,2

B , as the CEP is approached
along the phase boundary.
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Fig. 3. (Color online) Ratios of cumulants of net-baryon-number fluctuations in
the PQM model, computed along the chiral phase boundary, for four sets of model
parameters [32]. Also shown are the preliminary STAR data [25,26], assuming the
relation between the ratio (µq/T ) and the collision energy obtained by analyzing
the chemical freeze-out conditions [18, 35, 36]. The long-dashed/green line in the
left figure shows the baseline result for χ1,2

B , tanh(3µq/T ).

In the comparison of model predictions with data in Fig. 3, we assume
that the freeze-out of the net-baryon-number fluctuations tracks the chiral
phase boundary. Clearly, this assumption provides a qualitative understand-
ing of the data. In order to obtain a more quantitative description, we follow
Refs. [31,37,38], and determine the freeze-out conditions by fitting the data
on the χ3,1

B ratio, using the
√
s dependence of µq/T obtained from the fit of

the HRG model to particle multiplicities [18, 35,36].
In Fig. 4, we show the fluctuation ratios along the freeze-out line that is

fixed through the skewness data. The model results are obtained for four sets
of initial conditions introduced in [32]. Figure 4 clearly shows that, along
the freeze-out line, the spread of all fluctuations ratios considered for the
various parameter sets is much weaker than that observed in Fig. 3 along
the phase boundary. This indicates that moderate changes of the sigma
mass and modifications of the form of the Polyakov loop potential may lead
to a shift in the temperature scale but essentially no change of the relative
structure of the cumulant ratios.

The results presented in Fig. 4 clearly show that the model provides
a very good description of the data on χ1,2

B and χ3,2
B . Also the kurtosis

data, obtained at higher collision energies, are consistent with model results.
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Fig. 4. Ratios of cumulants of net-baryon-number fluctuations in the PQM model
along the freeze-out line, obtained by fitting χ3

B/χ
1
B to the STAR data. The four

sets of model parameters used and the preliminary STAR data shown are the same
as in Fig. 3.

However, at
√
s < 20 GeV, the latter again exhibits a different trend, with

the data increasing rapidly at lower energies, while the model result keeps
decreasing.

The comparison of model results on ratios of net-baryon-number suscep-
tibilities with the STAR data in Figs. 3 and 4 shows that the data, with
the exception of kurtosis at low energies, follow general trends expected due
to critical chiral dynamics and general considerations. We note that the ra-
tios of net-baryon-number susceptibilities near the phase boundary involving
net-baryon-number cumulants χnB with n ≥ 3 are controlled mainly by the
scaling functions in the O(4) and Z(2) universality classes, respectively. This
observation indicates that by measuring fluctuations of conserved charges in
heavy-ion collisions we are indeed probing the QCD phase boundary, and
thus accumulating evidence for chiral symmetry restoration.

However, as discussed above, there are several uncertainties and assump-
tions which must be thoroughly understood before the QCD phase boundary
can be pinned down with confidence. Possible contributions to fluctuation
observables from effects not related to critical phenomena, like e.g. baryon-
number conservation [39] and volume fluctuations [40,41] are being explored.
We mention, in particular, the rather strong sensitivity of higher order net-
proton-number cumulants on the transverse momentum range imposed in
the analysis of the STAR data. Nevertheless, it is intriguing that the dy-
namics of this model provides a good description of the STAR data (except
for χ4

B at the lowest energies), without all these effects of non-critical origin.
It remains an important task to assess the effect of theses additional sources
of fluctuations in the whole energy range probed by the experiments.
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