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If above a critical temperature not only the SU(NF)L×SU(NF)R chiral
symmetry of QCD but also the U(1)A symmetry is restored, then the actual
symmetry of the QCD correlation functions and observables is SU(2NF).
Such a symmetry prohibits existence of deconfined quarks and gluons.
Hence, QCD at high temperature is also in the confining regime and el-
ementary objects are SU(2NF) symmetric “hadrons” with not yet known
properties.
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1. Introduction

Nonperturbatively QCD is defined in terms of its fundamental degrees of
freedom, quarks and gluons in the Euclidean space-time. These fundamental
degrees of freedom are never observed in the Minkowski space, a property of
QCD which is called confinement. Only hadrons are observed. It is believed,
however, that at high temperature, QCD is in a deconfinement regime and
its fundamental degrees of freedom, quarks and gluons, are liberated. Is it
true? Here, we present results of our recent findings [1] that suggest that
this is actually not true.

In the Minkowski space-time, the QCD Lagrangian in the chiral limit is
invariant under the chiral transformations

SU(NF)L × SU(NF)R ×U(1)A ×U(1)V . (1)

The axial U(1)A symmetry is broken by anomaly [2]. The SU(NF)L ×
SU(NF)R symmetry is broken spontaneously by the quark condensate in
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the vacuum. According to the Banks–Casher relation [3], the quark con-
densate in the Minkowski space can be expressed through a density of the
near-zero modes of the Euclidean Dirac operator

lim
m→0
〈0|Ψ̄(x)Ψ(x)|0〉 = −πρ(0) . (2)

Consequently, if we remove by hands the near-zero modes of the Dirac opera-
tor, we can expect a restoration of the chiral SU(NF)L×SU(NF)R symmetry
in correlation functions. If hadrons survive this “surgery”, then the chiral
partners should become degenerate. The chiral partners of the J = 1 mesons
are shown in Fig. 1.
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Fig. 1. SU(2)L × SU(2)R and U(1)A classification of the J = 1 meson operators.

It was observed in NF = 2 dynamical simulations with the overlap
Dirac operator that, indeed, hadrons survive this truncation (except for the
ground states of J = 0 mesons) and the chiral partners get degenerate [4–7].
Not only the SU(2)L × SU(2)R restoration was observed. Mesons that are
connected by the U(1)A transformation get also degenerate. We conclude
that the same low-lying modes of the Dirac operator are responsible for
both SU(2)L × SU(2)R and U(1)A breakings, which is consistent with the
instanton-induced mechanism for both breakings [8].

Restoration of the full chiral symmetry SU(2)L× SU(2)R×U(1)A of the
QCD Lagrangian assumes degeneracies marked by arrows in Fig. 1. However,
a larger degeneracy that includes all possible chiral multiplets in Fig. 1 was
detected, see Fig. 2.

This unexpected degeneracy implies a symmetry that is larger than the
chiral symmetry of the QCD Lagrangian. This not yet known symmetry
was reconstructed in Refs. [9, 10] and turned out to be

SU(2NF) ⊃ SU(NF)L × SU(NF)R ×U(1)A . (3)
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Fig. 2. J = 1 meson mass evolution as a function of the number k of truncated
lowest-lying Dirac modes. σ shows energy gap in the Dirac spectrum.

This group includes as a subgroup the SU(2)CS (chiral spin) invariance.
The SU(2)CS chiral spin generators are

Σ =
{
γ0, iγ5γ0,−γ5

}
,

[
Σi, Σj

]
= 2iεijkΣk .

The Dirac spinor transforms under a global or local SU(2)CS transforma-
tion as

Ψ → Ψ ′ = eiεΣ/2Ψ . (4)

The γ5 generates an U(1)A subgroup of SU(2)CS. The γ0 and iγ5γ0 mix
the left- and right-handed components of the Dirac spinors. When we com-
bine the SU(2)CS generators with the SU(NF) generators, we arrive at the
SU(2NF) group.

2. SU(2NF) as a hidden classical symmetry of QCD [11]

The SU(4) symmetry of NF = 2 Euclidean QCD was obtained in lat-
tice simulations. This means that this symmetry must be encoded in the
nonperturbative Euclidean formulation of QCD. Obviously, the Euclidean
Lagrangian for NF degenerate quarks in a given gauge background Aµ(x)

L = Ψ †(x)(γµDµ +m)Ψ(x) (5)

is not SU(2)CS and SU(2NF)-symmetric, because the Dirac operator does
not commute with the generators of SU(2)CS. A fundamental dynamical
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reason for the absence of these symmetries are zero modes of the Dirac
operator, γµDµΨ0(x) = 0. The zero modes are chiral, L or R. With a gauge
configuration of a nonzero global topological charge, the number of the left-
handed and right-handed zero modes is, according to the Atiyah–Singer
theorem, not equal. Consequently, there is no one-to-one correspondence of
the left- and right-handed zero modes. The SU(2)CS chiral spin rotations
mix the left- and right-handed Dirac spinors. Such a mixing can be defined
only if there is a one-to-one mapping of the left- and right-handed spinors:
The zero modes break the SU(2)CS invariance.

We can expand independent fields Ψ(x) and Ψ †(x) over a complete and
orthonormal set Ψn(x) of the eigenvalue problem

iγµDµΨn(x) = λnΨn(x) , (6)

Ψ(x) =
∑

n cnΨn(x) , Ψ †(x) =
∑

k c̄kΨ
†
k(x) , (7)

where c̄k, cn are Grassmann numbers. The fermionic part of the QCD par-
tition function takes the following form:

Z =

∫ ∏
k,n

dc̄kdcne
∑

k,n

∫
d4xc̄kcn(λn+im)Ψ†k(x)Ψn(x) . (8)

In a finite volume, the eigenmodes of the Dirac operator can be separated
into two classes. The exact zero modes, λ = 0, and nonzero eigenmodes,
λn 6= 0. It is well-understood that the exact zero modes are irrelevant
since their contributions to the Green functions and observables vanish in
the thermodynamic limit V → ∞ as 1/V [12–14]. Consequently, in the
finite-volume calculations, we can ignore the exact zero-modes.

Now, we can read off the symmetry properties of the partition func-
tion (8). For any SU(2)CS and SU(2NF) rotation, the Ψn and Ψ †k Dirac
spinors transform as

Ψn → UΨn , Ψ †k → (UΨk)
† , (9)

where U is any transformation from the groups SU(2)CS and SU(2NF), U † =
U−1. It is then clear that the exponential part of the partition function is
invariant under global and local SU(2)CS and SU(2NF) transformations,
because

(UΨk(x))†UΨn(x) = Ψ †k(x)Ψn(x) . (10)

The exact zero modes contributions

Ψ †0(x)Ψn(x), Ψ †k(x)Ψ0(x), Ψ †0(x)Ψ0(x) ,
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for which equation (10) is not defined, are irrelevant in the thermodynamic
limit and can be ignored. In other words, QCD classically without the
irrelevant exact zero modes has in a finite volume V local SU(2)CS and
SU(2NF) symmetries. These are hidden classical symmetries of QCD.

The integration measure in the partition function is not invariant under a
local U(1)A transformation [2], which is a source of the U(1)A anomaly. The
U(1)A is a subgroup of SU(2)CS. Hence, the axial anomaly breaks SU(2)CS

and SU(2NF)→ SU(NF)L × SU(NF)R.
In the limit V → ∞ the otherwise finite lowest eigenvalues λ condense

around zero and provide according to the Banks–Casher relation at m→ 0 a
nonvanishing quark condensate in the Minkowski space. The quark conden-
sate in the Minkowski space-time breaks all U(1)A, SU(NF)L × SU(NF)R,
SU(2)CS and SU(2NF) symmetries to SU(NF)V. In other words, the hidden
classical SU(2)CS and SU(2NF) symmetries are broken both by the anomaly
and spontaneously.

3. Restoration of SU(2)CS and SU(2NF) at high temperature [1]

Above the chiral restoration phase transition, the quark condensate van-
ishes. If, in addition, the U(1)A symmetry is also restored [15–17] and a
gap opens in the Dirac spectrum, then above the critical temperature, the
SU(2)CS and SU(2NF) symmetries are manifest. The precise meaning of
this statement is that the correlation functions and observables are SU(2)CS

and SU(2NF) symmetric.
These SU(2)CS and SU(2NF) symmetries of QCD imply that there

cannot be deconfined free quarks and gluons at any finite temperature in
the Minkowski space-time. Indeed, the Green functions and observables cal-
culated in terms of unconfined quarks and gluons in the Minkowski space
(i.e. within the perturbation theory) cannot be SU(2)CS and SU(2NF) sym-
metric, because the chromo-magnetic interaction necessarily breaks both
symmetries. Then it follows that above Tc, QCD is in a confining regime. In
contrast, color-singlet SU(2NF)-symmetric “hadrons” (with not yet known
properties) are not prohibited by the SU(2NF) symmetry and can freely
propagate. “Hadrons” with such a symmetry in the Minkowski space can be
constructed [18].

4. Predictions

Restoration of the SU(2)CS and of SU(2NF) symmetries at high temper-
atures can be tested on the lattice.

Transformation properties of hadron operators under SU(2)CS and
SU(2NF) groups are given in Refs. [7,10]. For example, the isovector J = 1
operators Ψ̄~τγiΨ, (1−−); Ψ̄~τγ0γiΨ, (1−−); Ψ̄~τγ0γ5γiΨ, (1+−) form an irre-
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ducible representation of SU(2)CS. One expects that below Tc, all three
diagonal correlators will be different and the off-diagonal cross-correlator of
(1−−) operators will not be zero. Above Tc, an SU(2)CS restoration requires
that all diagonal correlators should become identical and the off-diagonal
correlator of (1−−) currents should vanish. A restoration of SU(2)CS and of
SU(NF)L × SU(NF)R implies a restoration of SU(2NF).

A similar prediction can be made with the baryon operators.
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