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In the present work, we compute relaxation rates of strongly coupled
field theories exhibiting non-trivial phase structures. Our method of choice
is a bottom-up gauge/gravity construction. Two different scenarios for a
holographic first order phase transition are examined, and in both cases
we establish the existence of a spinodal region. In addition, for a model
with linear confinement in the meson spectrum, we find a region of tem-
peratures with unstable non-hydrodynamic modes within a branch of black
hole solutions.
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1. Introduction

It is a well-known fact that different strongly coupled systems exhibit
different phase structures. For example, using lattice formulation of quan-
tum field theory, it has been shown that a pure gluon system undergoes a
first order phase transition [1], while inclusion of dynamical quarks changes
this to a crossover behaviour |2]. While lattice techniques capture the static
properties quite well, they do not reach real time dynamics easily, and one
has to resort to other methods. One possibility of formulating the problem is
the gauge/gravity duality [3], which has been proven useful in the heavy-ion
collision phenomenology [4]. Following this line of reasoning, recently, an
analysis has been performed aiming at quantifying the linearized excitations
of strongly coupled systems with various phase structures [5,6]. The focus of
this note is on the cases of a first order phase transition and different insta-
bilities that appear along with it. One of them is the generically expected
spinodal region [8], while the other is a brand new dynamical instability
appearing in a confining model.
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2. Equations of state

The bottom-up constructions assume that holographic dictionary holds,
and then model physics of interest by tuning the gravity-matter Lagrangian.
In our case, we turn on a source for a relevant scalar operator in the boundary
theory

L= Lcopr + A1720,, (1)

where A is some arbitrary energy scale and A is the conformal dimension of
Og. The dual gravitational description of this deformation is given by the
standard Einstein-scalar action |9, 10]
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The equations of state of the system are determined from the properties of
the dual black hole solution in terms of the Hawking temperature and the
Bekenstein-Hawking entropy [9, 10]. It is convenient to use the following
parametric form of the scalar field potential:

V(g) = —12(1+a¢?)"* cosh(y¢) + bad> +bag’ + b0,  (3)

where different choices of parameters corresponding to different phase struc-
tures were discussed in [5,6]. In the rest of this note, we focus on two cases
which give rise to two different types of a first order phase transition. The
detailed parameter choices were presented in [5]. The main difference is in
the parameter a, which is non-zero for the confining model.

In the first case (left panel of Fig. 1), the transition happens between two
different stable black hole solutions (solid/green and dashed/blue lines). The
dotted/red line in this case represents the spinodal instability region. The
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Fig.1. (Colour on-line) Equations of state for two different choices of model pa-
rameters. Left panel: entropy density as a function of temperature for a first order
phaste transition between two black hole solutions. Right panel: entropy density
(in units of AdS radius) as a function of temperature for the IHQCD potential.
Various lines represent different phases (see the text).
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second case is a version of Improved Holographic QCD potential (IHQCD)
[10] (right panel of Fig. 1), where the transition happens between a horizon-
less vacuum geometry and a black hole, which is similar in spirit to the
original proposal [11]. Here, the dashed/blue line is the spinodal region,
while the dotted/red line represents a novel phase which possesses unstable,
non-hydrodynamical degrees of freedom.

3. Instabilities

In holography the linearized, collective excitations of a uniform system
in a thermal equilibrium are quantified by quasinormal modes. According
to the bulk/boundary dictionary these correspond to the poles of retarded
Green’s function of the properly chosen local operators [7]. In theories
having classical dual description in terms of the General Relativity, there
is a discrete spectrum of mode frequencies wy, (k) = 2,(k) — i}, (k), with
n=0,1,2,... The real part, £2,(k), determines oscillatory behaviour, while
the imaginary part I},(k), determines the decay rate. Whenever I7,(k) > 0,
the mode is stable, while in the opposite case, the mode signals an instabil-
ity of the system. In the spectrum, one always finds a hydrodynamic mode,
defined by the relation limg_,owy(k) = 0 with the usual dispersion relation

o) = ek = o (374+5) #+0(#) ()

determined by the speed of sound and transport coefficients |7, 8|. Apart
from that, there is an infinite set of higher, non-hydrodynamic frequencies.

It is generically expected that a system with a first order phase transition
of any kind will exhibit a spinodal instability region and the related bubble
formation effect. A classical example known from elementary textbooks is
superheated water. A more sophisticated example is the spinodal region
related to the nuclear matter liquid-gas transition [8]. Confirmation of this
general prediction in the context of holographic models was put forward for
the first time in [6]. In the following research, another, still more intriguing
type of instability has been found [5,12]. We briefly review both phenomena,
referring the interested reader to the original references.

3.1. Spinodal instability

In Fig. 2, we show quasinormal modes in the spinodal region of the
first order phase transition without confining interactions. In this phase,
the hydrodynamic sound mode has positive imaginary part for a range of
momenta. This implies that the mode is growing in time and signals an
unstable phase. There is a characteristic size for the instability formation
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given by the maximum of the imaginary part of the mode dispersion relation
(called the growth rate [8]). As momentum increases, the viscus corrections
stabilize the perturbation. This behaviour is exactly what we expect from
the equations of state whenever ¢ < 0.

|Re |
s e e o
. P e . .05t e 40 . 4 atB5. .. 200
o = T o o o o
e o

20 .'. . —0.5.....03.-"“2:

- -

o ° ° . M T
° ® . - -
15 e ® . -1.0 . .
b oo oo . . .
. .
0 -15 .
’ -
[ e non-hydro, -2.0 @ non-hydro, . .
05 = non-hydro, . = non-hydro, R
-2.5] -0.04
« hydro oo j « hydro . .
00 01 02 03 04 08 06 07
q

0.5 1.0 1.5 2.0

Fig. 2. The sound channel quasinormal modes for the first potential at T" ~ 1.067;,.
An instability of the spinodal region is shown. The speed of sound at that temper-
ature is ¢2 ~ —0.1.

3.2. Dynamical instability

The second kind of instabilities was found in a confining model and has
no known field theory counterpart. An example of this behaviour is shown
in Fig. 3.
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Fig. 3. Sound channel quasinormal modes for the ITHQCD potential at T = 1.0277,,.
System displays dynamical instability in spite of thermodynamical stability.

Here, the hydrodynamic mode is well-behaved, with the instability
present in the lowest lying, non-hydrodynamic degrees of freedom. It goes all
the way to zero momentum, which implies that the system is unstable against
uniform perturbations. This is in a direct contrast to the spinodal instabil-
ity, which was inherently related to a non-zero length scale. At the moment,
there is no good understanding of this phenomena, as well as the fact that
this effect does not explicitly appear on the level of equations of state.
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4. Summary

The novel form of the unstable behaviour found in a class of holographic
models is definitely an interesting new direction of study. A possible direct
experimental connection has been anticipated in [12], given that in a full time
evolution of a homogeneous system, one could fine-tune the initial conditions
so that during the evolution of the system, the unstable phase would be
attainable for an arbitrary long time. This would cause the termalization
time to be much larger than the scale set by the inverse effective temperature
of the system. However, it might turn out that this is in some form an
artifact of the system, and that configurations suffering such instabilities
are not well-defined physical states. This question remains an open one.

This research was supported by the National Science Centre, Poland
(NCN) post-doctoral internship grant DEC-2013/08/S/ST2/00547.
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