
Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 3

FLUCTUATIONS OF CHARGES
AT THE PHASE BOUNDARY∗
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Properties of fluctuations of conserved charges in thermal equilibrium
are discussed. Particular emphasis is put on possible origin of deviations
from the Skellam distribution in higher order cumulants of net-baryon-
number fluctuations around the chiral critical line and those of net-electric
charge fluctuations at the chemical freeze-out. Importance of understand-
ing the reference distribution is stressed.
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1. Introduction

The search for Quantum Chromodynamics (QCD) phase transitions has
been one of central objectives in heavy-ion collision experiments. The suc-
cessful description of various particle yields produced in the collisions with
the grand canonical ensemble of a hadron gas [1] may allow for an interpre-
tation of event-by-event fluctuations of particle numbers as the equilibrium
fluctuations in a subsystem, which can be calculated in first-principle lattice
QCD (LQCD) and effective models [2].

Recent LQCD calculations indicate that the transition at finite temper-
ature and small baryon density is of smooth crossover at physical quark
masses [3]. Moreover, the crossover region seems consistent with the O(4)
scaling behavior [4] in the case of broken U(1)A. Although the phase struc-
ture at larger density is not yet known from LQCD due to the sign problem,
model calculations suggest rich phase structure [5]. In particular, discovery
of the QCD critical point (CP) is the primary object of the beam energy
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scan program in heavy-ion collision experiments [6]. It is expected that en-
hancement of the fluctuations of conserved charges signals the existence of
the critical point [7]. While the fluctuations will be the strongest at CP,
those induced by the criticality also take place at the crossover region. Since
the crossover transition can be regarded as a remnant of the second order
chiral phase transition in the chiral limit, behavior of the fluctuations near
chiral crossover also inherits this in the chiral limit. In this case, divergence
is smeared into sign changes [8, 9]. As the system goes from the transition
point, the remnants from the criticality become weaker and, finally, may re-
sult in a small deviation from non-critical reference value which is normally
taken to be that of non-interacting gas [10]. Therefore, one also needs to
understand the non-critical references under experimental circumstances.

In this proceedings, I outline the property of the fluctuations of the con-
served charges near the equilibrium chiral transition. I start with divergent
cumulants of net baryon number in the chiral limit based on O(N) scaling
theory. Then I discuss the smeared signal of the chiral transition at finite
volume or finite quark mass on the basis of explicit model calculations [9].
Finally, I briefly discuss the electric charge fluctuations in a hadron gas
which does not have any criticality to demonstrate a non-trivial deviation
from the reference distribution [11].

2. O(4) criticality in net-baryon-number fluctuations

Cumulants of conserved charges 〈(δN)n〉c are convenient to characterize
the property of fluctuations and theoretically can be obtained from deriva-
tives of thermodynamic pressure p(T, {µi}) with respect to chemical poten-
tials µi (i = B,Q, S)

χ(i)
n ≡

∂n
[
p(T, {µi})/T 4

]
∂(µi/T )n

=
〈(δN)n〉c
V T 3

. (1)

Provided that the pressure consists of a regular part p0 and a singular
part psing close to the chiral phase transition, the O(N) scaling theory gives
psing ∼ |T/Tc − 1|2−α, where α is the critical exponent of the specific heat
and α ' −0.21(−0.08) in 3d O(4) (O(2)) universality class [8]. This feature
leads to the divergent sixth order cumulant as the first divergent one at
µ = 0, since χ(B)

2n ∼ |T/Tc − 1|2−α−n. At µq = µB/3 6= 0, the leading
singularity is given by χ(B)

n ∼ (µq/T )
n|T/Tc − 1 + κµq/T |2−α−n, where κ

corresponds to the curvature of the O(N) critical line. Therefore, the third
order net-baryon cumulant is the first divergent cumulant at finite baryon
density. However, this divergent signal is smeared when the system has a
finite size or there is explicit chiral symmetry breaking. Then the signal is
weakened by the prefactor (µq/T )n in the small µq region.
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Figure 1 displays an example of the smearing of the divergent fluctu-
ations of the net baryon number near O(N) criticality. The results are
obtained from LQCD in the strong coupling limit with the auxiliary field
Monte-Carlo method, at vanishing quark masses1. Both third and fourth
order cumulants are divergent according to the O(N) scaling, but the finite
volume effect smears the divergence to oscillation across the critical tem-
perature. Such oscillation can be attributed to the peak structure of the
second-order cumulant, as higher order cumulant is obtained by differenti-
ating it with the chemical potential. Introducing non-vanishing quark mass
also induces the similar effects even in the thermodynamic limit, as seen in
model calculations [8]. Consequently, the criticality might emerge as a small
deviation from the reference value, i.e., hadron resonance gas.
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Fig. 1. The third (left) and fourth (right) order cumulants of the net baryon number
normalized by the second order one (Sσ = χ3/χ2 and κσ2 = χ4/χ2), obtained from
LQCD in the strong coupling and chiral limit. Figures are adopted from Ref. [9].

In the hadron resonance gas, the cumulants are expressed by the sum
over hadron species j [10]

χ(i)
n =

∑
j

(mj

πT

)2 ∞∑
k=1

kn−2K2(kmj/T )×

{
cosh(kµi/T ) , n = even ,
sinh(kµi/T ) , n = odd .

(2)

Taking only the leading term, k = 1 corresponds to the Boltzmann ap-
proximation. In this case, the cumulants have only two independent values,
χ
(i)
2m = χ

(i)
2 and χ(i)

2m+1 = χ
(i)
1 , and the underlying probability distribution is

the Skellam distribution [12]. Then the smeared critical fluctuation appears
as a deviation from the Skellam distribution in the higher order cumulants
and in the tail part of the probability distribution [13].

1 In this framework, the relevant symmetry is O(2) because of the use of the staggered
fermion.



678 K. Morita

3. Influence of quantum statistics in net-electric
charge fluctuations

When non-critical effects cause deviation from the Skellam distribution,
they have to be carefully examined before considering the critical effects.
Equilibrium net-baryon fluctuations of the hadron gas have only negligible
deviation from the Skellam distribution according to the sufficiently heavy
baryon masses. However, it is not the case for the net-electric charge fluc-
tuations in which pions play a crucial role. This can be seen from Eq. (1),
where the series can be interpreted as a multicomponent Boltzmann gas with
mass kmj , charge k and degeneracy kn−4. Higher order fluctuations of the
quantum gases behave as multi-charged one, which results in deviation from
the Skellam distribution [12]. An immediate consequence of this property
is a non-trivial dependence of the fluctuations on the momentum cut. Fig-
ure 2 (left) displays the χ(Q)

1 in a single-component free Bose gas for various
particle masses with low transverse momentum cut below ptmin normalized
by the value without cut. The response to the cut is stronger for lighter
particles, reflecting the influence of the Bose statistics. In Fig. 2 (right),
a cumulant ratio χ(Q)

4 /χ
(Q)
2 of the free π gas is shown for various tempera-

ture with respect to the low pt cut. By increasing ptmin, the cumulant ratio
approaches the value of the Skellam distribution. Thus, the deviation from
the Skellam distribution arises from the quantum statistics and its ptmin de-
pendence has a non-trivial structure. It has been shown that the difference
of χ(Q)

1 /χ
(Q)
2 between STAR [14] and PHENIX [15] data can be partly at-

tributed to pt cut effect [11], through analyses with the hadron resonance
gas model.
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Fig. 2. Cumulants of net-electric charge of a free Bose gas with low pt cuts. Figures
are from [11].
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