
Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 3

TOWARD THE DESCRIPTION OF FLUID DYNAMICAL
FLUCTUATIONS IN HEAVY-ION COLLISIONS∗

Marlene Nahrganga,b, Marcus Bluhmc,d

Thomas Schäferd, Steffen Bassb

aSUBATECH UMR 6457 (IMT Atlantique, Université de Nantes, IN2P3/CNRS)
Nantes, France

bDepartment of Physics, Duke University, Durham, USA
cInstitute of Theoretical Physics, University of Wrocław, Wrocław, Poland

dPhysics Department, North Carolina State University, Raleigh, USA

(Received April 26, 2017)

In this article, we present results obtained when fluid dynamical fluctu-
ations are included in relativistic 3+1 dimensional viscous fluid dynamics.
We discuss effects of the interactions of fluctuations due to nonlinearities
and the cutoff dependence.
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1. Introduction

Fluid dynamics has become the preferred tool to describe the bulk physics
of heavy-ion collisions. After a pre-equilibrium stage, the initial densities of
energy, momentum and conserved charges, which make up the first instances
of the quark–gluon plasma (QGP) are propagated according to relativistic
fluid dynamics until particlization to a dilute hadronic gas. Including the
QCD equation of state obtained from lattice QCD calculations as well as
shear and bulk viscosities, various models have been able to describe the
measured particle spectra and collective flow harmonics.

Despite this success, there are a couple of issues with this fluid dynamical
approach that need refinement before we can claim the precision extraction of
fundamental QGP properties. In this paper, we address recent progress that
has been made on one of these issues which is of particular importance for
studies of the QCD phase transition and for smaller systems: fluid dynamical
fluctuations.
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Conventional fluid dynamics propagates only thermal averages of energy,
momentum and charge densities. We know, however, that fluctuations which
depend on the number of particles or the volume are present even in thermal
equilibrium. The inclusion of dissipative processes into the fluid dynamical
equations via the shear-stress tensor and the bulk pressure, forces us — ac-
cording to the fluctuation dissipation theorem — to take fluctuations into
account as well. At the QCD phase transition, in particular near the con-
jectured critical point, fluctuation phenomena are expected to be of crucial
significance for experimental signals. These reasons urge us to develop mod-
els for the propagation of fluctuations which can be applied to describe the
dynamics and nonlinearities of critical phenomena.

First models [1–5] to couple the propagation of fluctuations with the fluid
dynamical evolution in heavy-ion collisions have been based on effective
models of QCD, like the quark–meson model. The chiral condensate, as
the order parameter for chiral symmetry breaking, is propagated explicitly
in these models and fluctuations couple to the fluid dynamical evolution
via a stochastic source term. It has been found that critical slowing down
weakens fluctuation signals in dynamical models compared to calculations
in static, grandcanonical systems. After particlization, critical fluctuations
are imprinted in the net proton number.

This article discusses the fluid dynamical propagation of intrinsic fluctu-
ations, which are derived in a model-independent approach.

The effect of fluctuations on fluid dynamics has been studied before ei-
ther in the linearized Bjorken expansions [6–8] or in linearized numerical im-
plementations [9]. First attempts at a fully numerical implementation [10]
show an impact on flow harmonics but lack an explicit discussion of crucial
aspects like the cutoff dependence of nonlinear interactions.

2. Fluid dynamical fluctuations

Starting from the linearized fluid dynamical equations for relativistic 3+1
dimensional systems, the correlators of the noise terms can be obtained in
linear response theory. For a noise field tensor Ξµν feeding into the full fluid
dynamical equations

∂µT
µν = ∂µ

(
Tµνeq + ∆Tµνvisc +Ξµν

)
= 0 , (1)

one obtains in the Gaussian white noise approximation

〈Ξµν〉 = 0 , (2)〈
Ξµν(x)Ξαβ

(
x′
)〉

= 2T
(
η
(
∆µα∆νβ +∆µβ∆να

)
+(ζ − 2η/3)∆µν∆αβ

)
δ4
(
x− x′

)
. (3)
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In order to overcome the acausality in the relativistic Navier–Stokes equa-
tions, the shear-stress tensor and the bulk pressure contained in ∆Tµνvisc are
themselves dynamical quantities. They evolve via the Israel–Stewart relax-
ation equations, which introduce relaxation times. In our approach we have
chosen to evolve the noise fields analogously to the viscous corrections via

uγ∂γΞ
〈µν〉 = −

Ξµν − ξµνGauss

τπ
, (4)

where ξµνGauss has the same covariances as the original noise tensor given
in (3). This introduces time correlations in the noise fields Ξµν . In the
example calculations shown in this work, we set ζ = 0 and choose the noise
relaxation time to be the same as the shear relaxation time τπ.

In the following, we present calculations, where we have included fluc-
tuations in the 3+1d relativistic viscous fluid dynamics code vHLLE [11].
Figure 1 shows the time evolution of the energy density e along one direc-
tion of the fluid confined in a box with periodic boundary conditions. The
noise field creates local fluctuations around the average energy and momen-
tum density in the box, which are then transported according to the fluid
dynamical equations. The lattice spacing used here is ∆x = 1 fm. We
discuss the dependence on the lattice spacing below.

’box_1d_1236_Qviol_mitIS_test2/outx.dat’ u 2:1:5

-40 -20  0  20  40

 0

 20

 40

 60

 80

 100

 0

 5

 10

 15

 20

 25

Fig. 1. Time evolution from 0–100 fm/c of the energy density in GeV/fm3 in one
direction of the fluid confined in a box.

We initialize the energy density homogeneously in the box at a value
of e0 = 10 GeV/fm3. Now, the lattice spacing is given by ∆x = 0.1 fm,
which is an order of magnitude smaller and, therefore, strongly increases
the variance of the noise field according to the delta function in (3). This
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can cause large gradients, which the present algorithm cannot always handle.
We, therefore, smooth the noise field over a correlation length of 1 fm. In
the left plot of Fig. 2, we show how the variance of the energy density
builds up after starting our calculations. Around 10 fm/c, one can see that
the variance has saturated and fluctuates around its average value. We
use averaging over timestep in order to analyse further quantities like the
spatial correlation function of the energy density correlator, shown in the
right plot of Fig. 2. For dx = 0, this corresponds to the local variance.
It can be observed that the correlation length of the noise field of 1 fm is
well-reflected in the correlations of energy density. At larger distances, one
finds negative correlations due to total energy conservation.
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Fig. 2. Time evolution of the variance 〈(∆e)2〉 (left) and correlation function
〈∆e(x)∆e(x+ dx)〉 (right).

Naively, one would expect that due to (2), the thermal averages of ther-
modynamic quantities like the energy density should be the same, irrespec-
tively of the presence of Ξµν in the fluid dynamical equations (1). It has been
shown, however, that the nonlinearities present in the full fluid dynamical
equations lead to nontrivial corrections [12,13]. In the retarded shear–shear
correlator, for example, one can identify three contributions stemming from
the interactions of the fluctuations

GxyxyR,shear−shear(ω,0) = − 7T

90π2
Λ3 − iω 7T

60π2
Λ

γη
+ (i+ 1)ω3/2 7T

90π2
1

γ
3/2
η

, (5)

where the first term on the RHS is a cutoff-dependent contribution to the
equilibrium pressure, the second term is a cutoff-dependent contribution to
the shear viscosity η, and the third term is a frequency-dependent contribu-
tion to both the shear viscosity η and the relaxation time τπ.
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In Fig. 3, we vary the lattice spacing ∆x and, therefore, the cutoff pa-
rameter Λ for values > 1 fm in order to avoid additional smoothing of the
noise field and have the algorithm run stable. We observe that both the cor-
rection to the average energy density (left plot) as well as the variance of the
energy density (right plot) scale as the third power (inversely proportional to
the cell volume) of the cutoff parameter. We note, however, that the overall
value of both quantities is only about 30–40 % of what is expected from (5)
and grandcanonical thermodynamics. This might be due to discretization
effects in the numerical simulations and total energy conservation.
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Fig. 3. Dependence on the lattice spacing V 1/3 of the correction to the average
energy density due to interactions of fluctuations (left) and of the variance of energy
density fluctuations (right).

3. Summary

In the beginning era of precision measurements performed in heavy-ion
collisions, it becomes necessary to include refinements in the theoretical
models that might lead to effects on the percent scale. One of these refine-
ments is the fluid dynamical treatment of thermal fluctuations, which are of
special interest at the QCD phase transition, in particular near the critical
point, in small systems and for measurements of higher-order flow harmon-
ics. We have presented recent progress on including these fluctuations in
3+1d relativistic viscous fluid dynamics. It turns out that the interaction of
fluctuations due to the nonlinearities inherent in the fluid dynamical equa-
tions leads to a renormalization of the equation of state and the transport
coefficients. A systematic effort is needed to ensure the accurate propagation
of fluctuations in fluid dynamical models.
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