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Paradigm shift in gauge topology, from instantons to their constituents
— instanton–dyons — has recently lead to very significant advances. Like
instantons, they have fermionic zero modes, and their collectivization at
sufficiently high density explains the chiral symmetry breaking. Unlike
instantons, these objects have electric and magnetic charges. Their back-
reaction on the mean value of the Polyakov line (holonomy) allows to ex-
plain the deconfinement transition. The paper summarizes recent works on
the dyon ensemble, done in the mean field approximation (MFA), and also
by direct numerical statistical simulation. Introduction of non-trivial quark
periodicity conditions leads to drastic changes in both deconfinement and
chiral transitions. In particularly, in the so-called Z(Nc)-QCD model the
former gets much stronger, while the latter does not seem to occur at all.
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1. Introduction

Confinement is the most famous non-perturbative feature of the gauge
theories. Its most intuitive explanation from 1970s is the dual superconductor
model by Nambu, ’t Hooft and Mandelstam [1]. Lattice studies did reveal
the monopoles (albeit defined in certain gauges) and prove that they indeed
form Bose–Einstein condensate at T < Tc, see e.g. [2].

Original discussion of the chiral symmetry and its breaking predate QCD
and even quarks. In a classic paper, Nambu and Jona-Lasinio [3] showed
that an attraction in the scalar q̄q channel, if strong enough, can dynamically
“gap” the surface of the Dirac sea. The origin of this interaction — claimed to
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be the origin of the mass of the “constinuent quarks”, the nucleons and thus
ourselves — was, of course, in 1961 completely unknown. Two decades later,
in my paper [4], it was suggested that NJL attraction is nothing else but
’t Hooft effective 2Nf interaction induced by instantons. Two parameters of
the NJL model have been substituted by another two: the total instanton–
anti-instanton density n ∼ 1/fm4 and their typical size ρ ∼ 1/3 fm. Of
course, ’t Hooft vertex does more than the NJL operator: in particular, it
breaks the U(1)A symmetry explicitly.

A decade later, instantons were found and studied on the lattice. Sta-
tistical mechanics of instanton ensemble, including ’t Hooft interaction to
all orders, known as the Interacting Instanton Liquid Model, has been de-
veloped and solved numerically in 1990s, for a review, see [5]. Among other
things, it introduced the notion of “collectivized zero mode zone”, or ZMZ for
short. Lattice practitioners struggle with it till now, since most of numerical
fluctuations in simulations come from it. And yet, some important questions
remained unanswered, such as e.g. Is there any connection between confine-
ment and chiral symmetry breaking? Why is it that the corresponding finite
temperature transitions happen close, Tc ≈ Tχ for fundamental quarks, but
not for adjoint ones [6]? Apart of color representations and the number of
flavors, can one introduce other parameters, affecting these transitions and
revealing the underlying mechanism?

The so-called Polyakov line is used as a deconfinement order parameter,
being non-zero at T > Tc. Interpreting this as existence of non-zero average
A0 field, one needs to modify all classical solutions respectively. When such
solutions were found in 1998 [7, 8], it has been realized that instantons get
split into Nc (number of colors) constituents, the self-dual instanton–dyons1,
connected only by (invisible) Dirac strings. Since these objects have non-zero
electric and magnetic charges and source Abelian (diagonal) massless gluons,
the corresponding ensemble is an “instanton–dyon plasma”, with long-range
Coulomb-like forces between constituents.

The first application of the instanton–dyons was made soon after their
discovery in the context of supersymmetric gluodynamics [9]. This paper
solved a puzzling mismatch of the value of the gluino condensate, between
the instanton-based and general supersymmetric evaluations of it.

Diakonov and collaborators (for review, see [10]) emphasized that, unlike
the (topologically protected) instantons, the dyons interact directly with the
holonomy field. They suggested that since such dyon (anti-dyon) ensemble
becomes denser at low temperature, their back-reaction may overcome per-
turbative holonomy potential and drive it to its confining value, leading to

1 They are called “instanton-monopoles” in applications to supersymmetric settings,
e.g. by Khose et al. and Unsal et al. Similar (but not identical) objects were called
the “instanton quarks” by Zhitnitsky et al.
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vanishing of the mean Polyakov line, or confinement. Specifically, Diakonov
and collaborators focused on the self-dual sector L,M and studied the one-
loop contribution to the partition function [11]. The volume element of the
moduli space was written in terms of dyons coordinates as a determinant
of certain matrix G, to be referred to as Diakonov determinant. In a dilute
limit, it leads to Coulomb interactions between the dyons, but in the dense
region, it becomes strongly repulsive, till at certain density the available
moduli volume vanishes.

A semi-classical confining regime has been defined by Poppitz et al.
[12, 13] in a carefully devised setting of softly broken supersymmetric mod-
els. While the setting includes a compactification on a small circle, with
weak coupling and an exponentially small density of dyons, the minimum
at the confining holonomy value is induced by the repulsive interaction in
the dyon–anti-dyon molecules (called bions by these authors). The crucial
role of the supersymmetry is the cancellation of the perturbative Gross–
Pisarski–Yaffe–Weiss (GPYW) [14] holonomy potential: as a result, in this
setting, there is no deconfined phase with trivial holonomy at all, unless
supersymmetry is softly broken. Sulejmanpasic and myself [15] proposed a
simple analytic model for the dyon ensemble with dyon–anti-dyon “repulsive
cores”, and have shown how they may naturally induce confinement in dense
enough dyonic ensemble.

Recent progress to be discussed below is related to studies of the in-
stanton-dyon ensembles. We will focus on a series of papers devoted to
high-density phase and mean field approximation [16–20] in Section 3, and
on the direct numerical simulation of the dyon ensembles [21–25] in Section 4.

Important ingredient of both of them is classical dyon–anti-dyon inter-
action, determined by Larsen and myself in Ref [22]: we skip its discussion
for space reasons. We would also like to emphasize importance of studies
devoted to the instanton–dyon identification on the lattice, such as [26].

2. Non-zero holonomy, instanton–dyons and confinement

The “holonomy” issue refers to the observation that a (gauge invariant)
Polyakov loop

P = P exp

i β∫
0

Aa0T
adτ

 (1)

has a non-zero vacuum expectation value (VEV), 〈P 〉 6= 0. Note that there
is no trace in this formula, so it is some unitary color matrix. One can
always gauge rotate it to be a diagonal one, to Cartan sub-algebra with
Nc − 1 parameters. The corresponding phases are denoted 2πµi, and their
subsequent differences νi = µi+1−µi. Figure 1 explains these notations, for
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2 and 5 colors. Note that
∑
µi = 0 and

∑
νi = 1: thus νi are fractions of

the holonomy circle. The action and the topological charge of the Nc dyons
is νi times that of the instanton.

Fig. 1. The holonomy circle and the definition of the parameters µi and νi, for 2
and 5 colors.

For the simplest SU(2) color group to be discussed below, there is only
one diagonal generator T 3 and only one parameter: The notations to be
used below are ν = ν2, ν̄ = 1 − ν = ν1. The mean Polyakov line is in this
notation simply

< 1
2TrP ≥ cos(πν) . (2)

At high T , 〈P 〉 → 1, which means all µi → 0. Thus all but one νi → 0,
and one tends to 1: so the original instanton action is recovered. In the
temperature interval (1 . . . 3)Tc, the mean Polyakov line or ν(T ) is a smooth
function of the temperature, changing from 0 to 1. Accounting for this
phenomenon led Pisarski and collaborators to “semi-QGP” paradigm [27]
and eventually to the construction of the PNJL model, in which light quark
paths are weighted by 〈P (T )〉. At T < Tc, in a confined phase, 〈P 〉 = 0
which means that ν = 1/2.

A non-trivial average value of the Polyakov line 〈P 〉 6= 1, indicating that
an expectation value of the gauge potential is non-zero. This calls for re-
defining the boundary condition of A4 at infinity, for any solitons made of
gauge fields, including the instantons.

For the SU(2) gauge group, the self-dual ones are called M with charges
(e,m) = (+,+) and L with charges (e,m) = (−,−), the anti-self-dual anti-
dyons are called M̄ , (e,m) = (+,−) and L̄, (e,m) = (−,+).

3. Dense dyon plasma in the mean field approximation

The first paper of the series, by Liu, Zahed and myself [16], had es-
tablished the mean field approximation (MFA) in the technical sense. The
derivation is rather traditional: after bosonization of the partition function,
certain fields are declared to be x-independent parameters, over which the
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free energy is minimized. The derivatives over all parameters define the
so-called “gap equations”, which need to be solved together, defining their
values at the global minimum.

Physics-wise, the main idea is that if the ensemble of the dyons is dense
enough, strong electric screening appears, which effectively reduces the pair-
wise correlations in the system, in favor of some average mean field. Here,
there is no place to present technical details of these works, and we just
summarize the results.

It is shown that dense enough dyon ensemble does shift the minimum of
the holonomy potential to the confining value, ν = 1/2 for the SU(2) gauge
theory considered.

The next work of the series [17] applies MFA to the Nc = 2 color theory
with Nf = 2 light quark flavors. At high density, the minimum of the free
energy still corresponds to the confining ensemble with ν = 1/2. The gap
equation for the effective quark mass (or the quark condensate) of [17] has
the usual form ∫

d3p

(2π)3
M2(p)

p2 +M2(p)
= nL , (3)

where the r.h.s. is the L-dyon density. The equation is for the parameter λ
in the mass functionM(p) = λpT (p), in which T (p) is the Fourier transform
of the “hopping matrix element” calculated using the fermionic zero mode.
Momentum dependence of M(p)/λ is shown in Fig. 2: note that its shape
and behavior at small momenta is different from that of an instanton. The
solution for the condensate can be parameterized as

|〈q̄q〉|
T 3

≈ 1.25
(nL
T 3

)1.63
. (4)

A generalization of the mean field treatment to arbitrary number of colors
and flavors in [17] shows that this gap equation has non-zero solutions for
the quark condensate only if

Nf < 2Nc . (5)

So, the critical number of flavors is Nf = 6 for Nc = 3. The lattice sim-
ulation indeed shows weakening of chiral symmetry violation effects with
increasing Nf , but specific results on the end of chiral symmetry breaking
are so far rather incomplete: for Nc = 3, we know that in the Nf = 4 case
the chiral symmetry is broken, the case Nf = 8 is not yet completely decided
and Nf = 12 seems to be already in the conformal window.

Another important generalization — for quarks in the adjoint represen-
tation — is made in a separate paper [19]. The number of fermionic zero
modes increases, and they are more complicated. In the symmetric dense
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Fig. 2. The momentum dependent constituent quark mass TM(p)/λ versus mo-
mentum in units of temperature p/T .

phase, both M and L dyons have two zero modes. But the actual difficulty
is not some longer expressions but the fact that one of them has rather sin-
gular behavior exactly at the confining value of the holonomy, ν = 1/2, so
approaching it needs special a care. In the case of Nc = 2, Na = 1, the de-
confinement and chiral restoration happen at about the same temperature.

4. Statistical simulations of the instanton–dyon ensembles

The first direct simulation of the instanton–dyon ensemble with dynam-
ical fermions has been made by Faccioli and myself in [21]. The general
setting follows the example of the “instanton liquid”, it included the deter-
minant of the so-called “hopping matrix”, a part of the Dirac operator in the
quasi-zero mode sector. It has been done for SU(2) color group and the num-
ber of fermion flavors Nf = 1, 2, 4. Except in the last case, chiral symmetry
breaking has been clearly observed, for dense enough dyon ensemble.

Larsen and myself [23] use direct numerical simulation of the instanton–
dyon ensemble, both in the high-T dilute and low-T dense regime. Unlike
the previous work, it uses classical dyon–anti-dyon interaction determined
in Ref. [22]. The holonomy potential as a function of all parameters of the
model is determined and minimized. In Fig. 3, we show the dependence
of the total free energy on holonomy value, for different ensemble densities.
As one can see, at high density of the dyons, their back-reaction shifts the
minimum to ν = 1/2, which is the confining value for SU(2) (cos(πν) = 0):
the confinement transition is thus generated. The self-consistent parameters
of the ensemble, minimizing the free energy, is determined for each density.
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Fig. 3. (Color online) Free energy density f as a function of holonomy ν at S = 6,
MD = 2 andNM = NL = 16. The different curves correspond to different densities.
• n = 0.53, � n = 0.37, � n = 0.27, N n = 0.20, H n = 0.15, ◦ n = 0.12. Not all
densities are shown.

The next work of Larsen and myself [24] addressed the issue of chiral
symmetry breaking in the Nc=2 theory with two light quark flavors Nf =2.
Numerical simulations are done for partition function appended by the
fermionic determinant, evaluated in the zero mode approximation. Using
two sizes of the system, with 64 and 128 dyons, we identify the finite-size

S

T/Tc

Σ

P

Fig. 4. (Color online) The Polyakov loop P (blue circles) and the chiral condensate
Σ (red squares) as a function of action S = 8π2/g2 or temperature T/Tc. Σ is
scaled by 0.2.
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effects in the eigenvalue distribution, and extrapolate to an infinite size sys-
tem. The location of the chiral transition temperature is defined both by
extrapolation of the quark condensate, from below, and the so-called “gaps”
in the Dirac spectra, from above. We do indeed observe, for SU(2) gauge
theory with 2 flavors of light fundamental quarks, that the deconfinement
and chiral symmetry restoration transitions occur about at the same dyon
density, see Fig. 4. Determination of the precise transition points is difficult
since both transitions appear to be in this case just a smooth crossovers.
Those should correspond to inflection points (change of curvature) on the
plots to be shown. Looking from this perspective at Fig. 4, one would locate
the inflection points of both curves, for 〈P 〉 or 〈ψ̄ψ〉, at the same location,
namely S = 7–7.5.

5. Quarks with non-trivial periodicity and Z(Nc) QCD

Periodicity condition along the Matsubara circle can be defined with
some arbitrary angles ψf for quarks with the flavor “f”. As was determined
by van Baal and collaborators, fermionic zero mode “hops” from one type of
dyon to the next at certain critical values. The resulting rule is: it belongs
to the dyon corresponding to the segment of the holonomy circle νi to which
the periodicity phase belongs: µi < ψf < µi+1.

In physical QCD, all quarks are fermions, and therefore ψf = π for
all “f”. This case is schematically shown by blue (light gray in print) dots in
Fig. 5 (left): all fermions fall on the same segment of the circle, and therefore
only one, of Nc dyons, have zero modes and interact with quarks.

One can, however, introduce other arrangements of these phases. In
particular, for Nc = Nf , the opposite extreme is the so-called Z(Nc) QCD,
proposed in [28–32], put symmetrically around the circle, see Fig. 5 (right).
In this case, the instanton–dyon framework becomes very symmetric: each
dyon interacts with “its own” quark flavor.

Fig. 5. Schematic explanation of the difference between the usual QCD (left) and
the Z(Nc) QCD (right).
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The Z(Nc) QCD has been studied in the mean field framework [20], by
statistical simulations [25] and also by lattice simulations [33]. The first
two papers consider the Nc = Nf = 2 version of the theory, while the last
one focuses on the Nc = Nf = 3. In the former case, the set of phases
are ψf = 0, π, so one quark is a boson and one is a fermion. In the latter,
ψf = π/3, π,−π/3.

All these works find deconfinement transition to strengthen significantly,
compared to QCD with the same Nc, Nf in which it is a very smooth
crossover. While in [20] the 〈P 〉 reaches zero smoothly, à la second or-
der transition, the simulations [25] and lattice [33] both see clear jump in its
value indicated strong first order transition. The red squares at Fig. 6 (left)
from [25] are comparing the behavior of the mean Polyakov line in Z2 and
ordinary QCD. The parameter S used as a measure of the dyon density is
the “instanton action”, related with the temperature by

S =

(
11Nc

3
− 2Nf

3

)
log

(
T

Λ

)
. (6)

The dyons share it as SM = νS, SL = ν̄S. So, larger S at the r.h.s. of
the figure corresponds to high T and thus to more dilute ensemble, since
densities contain exp(−Si).

All three studies see a non-zero chiral condensates in the studied region
of densities: perhaps no chiral restoration happens at all. The values for the
condensate are shown in Fig. 6 (right) from [25].

Fig. 6. (Color online) Left: The mean Polyakov line P versus the density parameter
S. Red squares are for Z2QCD, while blue circles are for the usual QCD, both
with Nc = Nf = 2. Right: The quark condensate versus the density parameter S.
Black triangles correspond to the usual QCD: and they display chiral symmetry
restoration. Blue and red points are for two flavor condensates of the Z2QCD: to
the left of vertical line there is a “symmetric phase” in which both types of dyons
and condensates are the same.
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The simulation [20] demonstrates that the spectrum of the Dirac eigen-
values has a very specific “triangular” shape, characteristic of a single-flavor
QCD. This explains why the Z(Nc) QCD has much larger condensate than
ordinary QCD, at the same dyon density, and also why there is no tendency
to restoration. As expected, all works see different condensates, 〈ūu〉 6= 〈d̄d 〉,
but with difference smaller than one could expect from the difference in the
dyon density.

6. Summary

Studies of semiclassical theory and gauge topology shifted from instan-
tons in the QCD vacuum to the finite temperature phenomena, and more
specifically, to the mechanisms of the deconfinement and chiral restora-
tion transitions. Incorporation of non-zero VEV of the Polyakov line —
called holonomy — leads to a shift from instantons to their constituents —
instanton–dyons. Recent papers on the ensembles of those, done both in the
mean field approximation and by direct statistical simulations, have lead to
significant advances. Unlike instantons, these objects have three different
set of charges, therefore affecting holonomy value and thus allowing to tie
together deconfinement and chiral restoration.

Like the instantons, dyons have topological charges and are subject
to topological index theorems. It means that for appropriate fermionic
boundary conditions, they must have fermionic zero modes. Collectivization
of those into a quark condensate follows, provided the ensemble is dense
enough. Unlike instantons, the dyons posses (Euclidean) electric charges,
and interact directly with the holonomy. Therefore, they back-react and are
able to modify the holonomy potential. Furthermore, as the calculations
showed, the potential’s minimum shifts to confining value of the holonomy,
at which all types of dyons become equal.

Unlike instantons, the dyons posses magnetic charges, and thus their
ensemble generates the magnetic screening mass. Recall that perturbative
polarization tensor does not generate it [34]: but, according to lattice data,
in the near-Tc region, it is comparable to the electric screening mass. While
we have not discuss it above, let me just mention that it clearly indicates a
transition from electric (QGP) to magnetic plasma, as the coupling grows
with decreasing temperature.

This round of studies has shown why QCD with light quarks, unlike pure
gauge theories, have rather smooth cross-over transition: the reason is the
symmetry between different dyon kinds is broken by quarks in a very robust
way: thus, the “symmetric phase” — in which all dyons are represented
equally — is never realized. The densities of L,M dyons are always different
by at least factor two or so.
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It is a remarkable finding that, with the same number of light quarks
but modified periodicity phases ψf , one gets back a strong first order de-
confinement transition. Further studies with variable phase should reveal
an “internal phase transitions” related with “hopping” of quark zero mode
from one type of dyon to the next. Since this phenomenon has no other
known explanation, apart of instanton–dyon theory, documenting those on
the lattice would be crucial to finalize the mechanism of the deconfinement
and chiral transitions.

My final point is an obvious one: multiple predictions of the instanton–
dyon model need to be extensively checked on the lattice. While the peri-
odicity phases mentioned above open new windows, needless to say, those
should also be supplemented by a systematic “hunt” for instanton–dyons on
the lattice, to quantify their density and parameters directly.

The progress reported would not be possible without contributions
by Pierre van Baal and Mitya Diakonov, the consequences of whose legacy
remains to be worked out. The particular results reported here were ob-
tained with my collaborators on the instanton–dyon projects, P. Faccioli,
T. Sulejmanpasic, R. Larsen, I. Zahed, and Y. Liu.
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