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The paper presents my recent investigations of volume corrections on
the cumulant products of net-charge distributions in statistical model, cor-
responding to the data reported by the STAR Collaboration. The corrected
statistical expectations, under simple Poisson approximations, can reason-
ably explain the data measured in experiment. The results indicate that
volume corrections play crucial role in event-by-event multiplicity fluctua-
tion studies.
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1. Introduction

The multiplicity fluctuations with event-by-event analysis are expected
to provide us with some crucial information about the critical end point
of Quantum Chromodynamics phase diagram in the (7, ug) plane [1-6].
Some observables, e.g. the cumulants of (net-conserved) charge distributions,
have been measured by the beam energy scan (BES) program from the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
(BNL) with a wide range of collision energies from /sy = 7.7 GeV to
VSNN = 200 GeV [7-9].

Besides the fluctuation data and theoretical studies on critical fluctu-
ations, it is clear that a sufficient understanding of non-critical statistical
fluctuations is also important. To bridge the gaps between experimental
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measurements and statistical fluctuation calculations, I have derived a gen-
eral formalism in statistical model [10] for recent multiplicity fluctuation
measurements at RHIC [7-9]. With the volume corrections, the multiplicity
distributions can be written as [10, 11]

Pialalk) = / AVE(V)Pa(k V) Py(: V), (1)
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where &2 4(k) is the distribution of reference multiplicity

Zatt) = [AVFV)PAkiV). 2

Here, ¢ represents the multiplicity of fluctuation measures in moment anal-
ysis sub-event B, and k represents the multiplicity of reference particles in
centrality definition sub-event A. P4 (k;V) and Pp(q; V) stand for multi-
plicity distributions in a fixed volume V. Here, I have assumed that the two
sub-events are independent of each other in each event.

2. Corrected cumulant products of net-charge distributions

First, I assume that the probability distribution P4(k; V') of reference
particles in a fixed volume is Poisson distribution. Then the volume V
can be substituted by A, the Poisson parameters of P4(k). At non-central
collisions, the first four cumulants of #p(q|k) read [11,12]
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where k1, k2, k3 and k4 are the first four reduced cumulants of Pp(g; \) [11]
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with Ag = ¢ — ¢ and

Pak+1)

W=k )

~k+1. (5)

If the net-charge distributions are the Skellam distributions in a fixed
volume, one obtains kK1 = k3 = k4 — Kk— and Ky = Kq4 = Ky + K_, where
kt = My/(k + 1) and My are the mean value of positive and negative
charges. The cumulant products of net-charge distributions can be written
as [10,11]
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with @ = k_/ky = M_/My, B = ke = My/(k+1), v = B(1 —a)? +
1 + a. In the experiment [9], the kinematic cut for the reference particles
(total charges) in sub-event A is 1.0 > |n| > 0.5 and for the fluctuation
measures (net charges) in sub-event B is |n| < 0.5, where 7 is pseudorapidity.
Therefore, due to the multiplicity distributions as a function of 7 are almost
platform-like distributions at mid-rapidity, one obtains M + M_ ~ k + 1
and f ~1/(1+ «). Equation (6) can be written as
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where I have used o ~ 1.

In Eq. (7), the scale variance w is close to the Skellam expectation, which
indicates that the volume corrections on scale variances of net-charge distri-
butions can be neglected. However, the values of So and ko? of net-charge
distributions are about four times of the Skellam expectations. The cor-
rected cumulant products and data are shown in Fig. 1. The corrected So
are closer to the experiment data/NBD baselines than the Skellam baselines
given in [9]. The corrected rxo? are close to the NBD baselines, but fail
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to quantitatively reproduce the data. This indicates the existence of cor-
relations between positive and negative charges [9] and/or the correlations
between the fluctuation measures and the reference particles. The results in-
dicate that the volume corrections play crucial role for the data of net-charge
distributions reported by the STAR Collaboration [9].
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Fig.1. (Color online) Volume-corrections-corrected So (left) and ro?(right) of
the net-charge multiplicity distribution in Au+Au collisions at /syy = 7.7 to
200 GeV. The data, Skellam and NBD baselines are taken from [9)].

Note that, though it have been shown in the figures, the results in 0-5%
centrality bins are questionable. This is due to the non-trivial features of
volume distributions at most-central collisions, which are reflected in the
rapid decreasing of reference multiplicity distributions at a top few central-
ity percentage. With the Glauber volume distributions, I found that the
non-critical volume corrections on high-order cumulants become weak at
most-central collisions [11]. However, the details of volume distribution in
relativistic heavy-ion collisions are required for more precise event-by-event
multiplicity studies.
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3. Conclusions and discussions

The volume corrections on net-charge distributions at the non-central
heavy-ion collisions have been investigated. The multiplicity fluctuations of
reference particles and fluctuation measures in a fixed volume are simulated
by the Poisson and Skellam distributions. The volume corrections make
significant contribution to the measured cumulants products So and ko2 of
net-charge distributions reported by the STAR Collaboration, but can be
neglected for the scale variance w.

Note that, even in a fixed volume, there are many other effects that make
the multiplicity distributions deviate from the Poisson distributions. These
corrections, e.g., finite volume effect, quantum effect, resonance decays, ex-
perimental acceptance, etc. [13—15], should be taken into account, especially
in the case of net-proton distributions reported by the STAR. Collaboration.

This work was supported by the China Postdoctoral Science Foundation
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