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The paper presents my recent investigations of volume corrections on
the cumulant products of net-charge distributions in statistical model, cor-
responding to the data reported by the STAR Collaboration. The corrected
statistical expectations, under simple Poisson approximations, can reason-
ably explain the data measured in experiment. The results indicate that
volume corrections play crucial role in event-by-event multiplicity fluctua-
tion studies.
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1. Introduction

The multiplicity fluctuations with event-by-event analysis are expected
to provide us with some crucial information about the critical end point
of Quantum Chromodynamics phase diagram in the (T, µB) plane [1–6].
Some observables, e.g. the cumulants of (net-conserved) charge distributions,
have been measured by the beam energy scan (BES) program from the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
(BNL) with a wide range of collision energies from

√
sNN = 7.7 GeV to√

sNN = 200 GeV [7–9].
Besides the fluctuation data and theoretical studies on critical fluctu-

ations, it is clear that a sufficient understanding of non-critical statistical
fluctuations is also important. To bridge the gaps between experimental
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measurements and statistical fluctuation calculations, I have derived a gen-
eral formalism in statistical model [10] for recent multiplicity fluctuation
measurements at RHIC [7–9]. With the volume corrections, the multiplicity
distributions can be written as [10,11]

PB|A(q|k) =
1

PA(k)

∫
dV F (V )PA(k;V )PB(q;V ) , (1)

where PA(k) is the distribution of reference multiplicity

PA(k) =

∫
dV F (V )PA(k;V ) . (2)

Here, q represents the multiplicity of fluctuation measures in moment anal-
ysis sub-event B, and k represents the multiplicity of reference particles in
centrality definition sub-event A. PA(k;V ) and PB(q;V ) stand for multi-
plicity distributions in a fixed volume V . Here, I have assumed that the two
sub-events are independent of each other in each event.

2. Corrected cumulant products of net-charge distributions

First, I assume that the probability distribution PA(k;V ) of reference
particles in a fixed volume is Poisson distribution. Then the volume V
can be substituted by λ, the Poisson parameters of PA(k). At non-central
collisions, the first four cumulants of PB(q|k) read [11,12]

c1
〈λ〉

= κ1 ,

c2
〈λ〉

= κ2 + κ21 ,

c3
〈λ〉

= κ3 + 3κ2κ1 + 2κ31 ,

c4
〈λ〉

= κ4 + 4κ3κ1 + 3κ22 + 12κ2κ
2
1 + 6κ41 , (3)

where κ1, κ2, κ3 and κ4 are the first four reduced cumulants of PB(q;λ) [11]

κ1 =

∑
qPB(q;λ)

λ
≡ q̄

λ
,

κ2 =

∑
(∆q)2PB(q;λ)

λ
,

κ3 =

∑
(∆q)3PB(q;λ)

λ
, (4)

κ4 =

∑
(∆q)4PB(q;λ)− 3

(∑
(∆q)2PB(q;λ)

)2
λ
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with ∆q ≡ q − q̄ and

〈λ〉 = (k + 1)
PA(k + 1)

PA(k)
' k + 1 . (5)

If the net-charge distributions are the Skellam distributions in a fixed
volume, one obtains κ1 = κ3 = κ+ − κ− and κ2 = κ4 = κ+ + κ−, where
κ± = M±/(k + 1) and M± are the mean value of positive and negative
charges. The cumulant products of net-charge distributions can be written
as [10,11]

ω ≡ c2/c1 = β(1− α) +
1 + α

1− α
,

Sσ ≡ c3/c2 = 2β(1− α) +
β
(
1− α2

)
+ 1− α

β(1− α)2 + 1 + α
,

κσ2 ≡ c4/c2 = 6β

(
γ − 2α

γ

)
+ 1 (6)

with α = κ−/κ+ = M−/M+, β = κ+ = M+/(k + 1), γ = β(1 − α)2 +
1 + α. In the experiment [9], the kinematic cut for the reference particles
(total charges) in sub-event A is 1.0 > |η| > 0.5 and for the fluctuation
measures (net charges) in sub-event B is |η| < 0.5, where η is pseudorapidity.
Therefore, due to the multiplicity distributions as a function of η are almost
platform-like distributions at mid-rapidity, one obtains M+ + M− ' k + 1
and β ' 1/(1 + α). Equation (6) can be written as

ω ' 1− α
1 + α

+
1 + α

1− α
' 1 + α

1− α
,

Sσ ' 2
1− α
1 + α

+
2(1− α)

(1−α)2
1+α + 1 + α

' 4
1− α
1 + α

,

κσ2 '
6
(
γ − 2α

γ

)
1 + α

+ 1 ' 7− 12α

(1 + α)2
' 4 , (7)

where I have used α ' 1.
In Eq. (7), the scale variance ω is close to the Skellam expectation, which

indicates that the volume corrections on scale variances of net-charge distri-
butions can be neglected. However, the values of Sσ and κσ2 of net-charge
distributions are about four times of the Skellam expectations. The cor-
rected cumulant products and data are shown in Fig. 1. The corrected Sσ
are closer to the experiment data/NBD baselines than the Skellam baselines
given in [9]. The corrected κσ2 are close to the NBD baselines, but fail
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to quantitatively reproduce the data. This indicates the existence of cor-
relations between positive and negative charges [9] and/or the correlations
between the fluctuation measures and the reference particles. The results in-
dicate that the volume corrections play crucial role for the data of net-charge
distributions reported by the STAR Collaboration [9].
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Fig. 1. (Color online) Volume-corrections-corrected Sσ (left) and κσ2(right) of
the net-charge multiplicity distribution in Au+Au collisions at

√
sNN = 7.7 to

200 GeV. The data, Skellam and NBD baselines are taken from [9].

Note that, though it have been shown in the figures, the results in 0–5%
centrality bins are questionable. This is due to the non-trivial features of
volume distributions at most-central collisions, which are reflected in the
rapid decreasing of reference multiplicity distributions at a top few central-
ity percentage. With the Glauber volume distributions, I found that the
non-critical volume corrections on high-order cumulants become weak at
most-central collisions [11]. However, the details of volume distribution in
relativistic heavy-ion collisions are required for more precise event-by-event
multiplicity studies.
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3. Conclusions and discussions

The volume corrections on net-charge distributions at the non-central
heavy-ion collisions have been investigated. The multiplicity fluctuations of
reference particles and fluctuation measures in a fixed volume are simulated
by the Poisson and Skellam distributions. The volume corrections make
significant contribution to the measured cumulants products Sσ and κσ2 of
net-charge distributions reported by the STAR Collaboration, but can be
neglected for the scale variance ω.

Note that, even in a fixed volume, there are many other effects that make
the multiplicity distributions deviate from the Poisson distributions. These
corrections, e.g., finite volume effect, quantum effect, resonance decays, ex-
perimental acceptance, etc. [13–15], should be taken into account, especially
in the case of net-proton distributions reported by the STAR Collaboration.

This work was supported by the China Postdoctoral Science Foundation
under grant No. 2015M580908.
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