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We investigate the soft mode at the QCD critical point (CP) on the
basis of the functional renormalization group. We calculate the spectral
functions in the meson channels in the two-flavor quark—meson model. Our
result shows that the energy of the peak position of the particle-hole mode
in the sigma channel becomes vanishingly small as the system approaches
the QCD CP, which is a manifestation of the softening of the phonon mode.
We also extract the dispersion curves of the mesonic and the phonon mode,
a hydrodynamic mode which leads to a finding that the dispersion curve
of the sigma-mesonic mode crosses the light-cone into the space-like mo-
mentum region, and then eventually merges into the phonon mode as the
system approaches further close to the CP. This may suggest that the sigma-
mesonic mode forms the soft mode together with the hydrodynamic mode
at the CP.
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1. Introduction

One of the expected structure of the QCD phase diagram is the existence
of the first-order phase boundary between the hadronic phase and the quark—
gluon plasma phase [1]. In particular, the phase transition becomes second
order at the end point of the phase boundary, which is referred to the QCD
critical point (CP).

A system near the CP shows large fluctuations of and correlations be-
tween various quantities and thus a method beyond the mean-field theory is
desirable for describing the physical properties near the CP. The functional
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renormalization group (FRG) [2-5] is a nonperturbative method for the field
theory and is expected to be a method to reveal the nature of the system
more accurately than the mean-field theory. It has been found to be use-
ful in the description of chiral phase transition in QCD via effective chiral
models [6-12].

There exist specific collective modes which are coupled to the fluctuations
of the order parameter and become gapless and long-life at the CP. Such a
mode is called the soft mode. As for the QCD CP, the nature of the soft
modes is nontrivial due to the presence of current quark mass together with
the violation of charge conjugation symmetry owing to the finite baryon
chemical potential, and the soft mode is considered to be the particle-hole
mode corresponding to the density (and energy) fluctuations [13,14].

We shall report on our recent work [15|, where we have investigated
the nature of low-energy modes at the QCD CP in the framework of FRG.
We calculate the spectral functions in the sigma and pion channels in the
two-flavor quark—meson model. Our results confirm the softening of the
particle-hole mode in the sigma channel near the QCD CP. In addition, we
find that the low-momentum dispersion relation of the sigma-mesonic mode
penetrates into the space-like momentum region and the mode merges into
the bump of the particle-hole mode.

2. Method

The FRG is based on the philosophy of the Wilsonian renormalization
group [2-5]. In this method, the effective average action (EAA) I} is intro-
duced such that it becomes bare action at a large UV scale k = A and the
effective action at £ — 0, where k represents the scale of the renormalization
flow. The flow of EAA for k is described by a functional differential equa-
tion known as the Wetterich equation [2]. In principle, the effective action
I'i—o is calculated by solving the Wetterich equation with the bare action
I’y being the initial value.

The spectral functions in the sigma and pion channel p,(w,p) (p =
|P’|) are obtained in terms of the imaginary parts of the retarded two-point
functions. The expansion of the Wetterich equation by fields gives infinite
series of coupled differential equations for the vertex functions. In particular,
the second order of the expansion gives the flow equation for two-point
functions. By introducing some approximation truncating the infinite series
of differential equations, the two-point functions can be calculated from the
flow equations. One of the ways is evaluating the terms in the flow equation
using a truncated EAA to solve the flow equation. Such an approximation
scheme has been developed in the cases of the O(4) model [16] and the
quark—meson model [17,18].
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We employ the two-flavor quark—meson model as the low-energy effective
model of QCD. This is a chiral effective model consisting of the quark field ¥
and mesonic fields o and 7. In our calculation, we employ a truncated EAA
for which the local potential approximation is applied in the meson part [9].
With this truncated EAA, we evaluate the terms in the flow equations for
the sigma and pion two-point functions.

We employ the imaginary time formalism to analyze the finite-tempera-
ture system. In the formalism, analytic continuation from the Matsubara
frequency to real frequency is needed to get retarded two-point functions,
which often involves some intricate procedures. In our case, it is known that
such a difficulty can be evaded at the level of the flow equations analyti-
cally [17-19].

The concrete forms of our flow equations and details for our numerical
procedure is presented in Ref. [15].

3. Result

We first determine the location of the CP. Our truncated EAA contains
the potential term and it provides static properties of the system [15]. From
the result of the chiral condensate and the square of the sigma screening
mass, i.e. the inverse of the chiral susceptibility, we estimate the critical tem-
perature T, and chemical potential p. as (T¢, pe) = (5.1 £ 0.1 MeV, 286.6 +
0.2MeV). In the following discussion, we regard T and p. as 5.1 MeV and
286.686 MeV, respectively.

Now we shall present the result of the spectral function in the sigma
channel p, near the QCD CP. The calculation is performed by increasing
the chemical potential toward p. along a constant temperature line T' = T¢.
Figure 1 is the contour map of p,. At = 286.3 MeV, the peaks of the sigma-
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Fig.1. Contour maps of p, at T = T, and p = 286.3MeV, 286.575MeV and
286.59 MeV. (Taken from [15].)



780 T. Yokora, T. KuNiHIRO, K. MORITA

meosnic mode (o mode) and the particle-hole (p—h) bump can be seen in the
time-like momentum region w > p and space-like momentum region w < p,
respectively. One can also see the dispersion relations of these modes from
the peak positions. As the chemical potential approaches the critical value
from below, the dispersion relation of the o mode shifts downward and it
touches the light cone near p = 286.575MeV. At p = 286.59 MeV, the
o mode with small momentum clearly penetrates into space-like momentum
region and merges to the p—h bump, which has a flat dispersion relation in
the small momentum region.

Next, we show the strength of peaks and bumps of p, when p is set to
50 MeV. The results when p = 286.00 MeV, 286.50 MeV and 286.57 MeV are
shown in Fig. 2(a). One can see the bumps corresponding to 20 and 27
decay in the time-like momentum region as well as the sigma-mesonic peak.
The peak of the o mode shifts to the lower energy as the system approaches
the CP. The position of the 20 threshold also goes down to a lower energy
region, while those of the 27 and 1)1 thresholds hardly change. The bump
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Fig.2. The result of p, near the QCD CP at T = T, in (a) 286.00MeV < p <
286.57 MeV and in (b) 286.57MeV < u < 286.59 MeV. p is set to 50 MeV. §) rep-
resents the 20 decay thresholds for each chemical potential. (Taken from [15].)
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in the space-like momentum region is drastically enhanced as the system is
close to the CP. This behavior can be interpreted as the softening of the p—h
mode. In Fig. 2 (b), we show the results at chemical potentials much closer
to the CP. Because of numerical instability in 286.60 MeV < 1 < 360 MeV,
we choose u = 286.58 MeV and 286.59 MeV. For comparison, the result
at p = 286.57MeV is also shown. These results are quite different from
those in p < 286.57MeV. In p > 286.57 MeV, the o mode penetrates into
the space-like momentum region and then merges into the p—h mode. Our
results indicate that the o mode as well as the p—h mode can become soft
at the CP.

A possible trigger of this phenomenon may be identified with the level
repulsion between the o mode and other modes. In particular, the two-sigma
(oo) mode is considered to play an important role since the threshold of the
oo mode shifts downward as the system approaches the CP. To see the effect
of the repulsion between the o and oo mode, we calculate p, with changing
the strength of the sigma three-point vertex in the flow equation. Our result
shows that the interaction between the two modes strongly affects the level
of the o mode.

We also calculate the spectral function in the pion channel p,. No critical
behavior of modes is observed in p, in contrast to the ¢ channel.

4. Summary

We have calculated the spectral functions in the sigma and pion channels
with the functional renormalization group to analyze the soft mode at the
QCD CP. We have employed the two-flavor quark—meson model, and our
calculation is based on the local potential approximation. The bump of the
particle-hole mode in the spectral function in the sigma channel is enhanced
as the system approaches the CP, which corresponds to the softening of the
phonon mode. We have also found that the dispersion relation of the sigma-
mesonic mode penetrates into the space-like momentum region and merges
into the particle-hole mode as the system further approaches the CP, which
suggests the softening of the sigma-mesonic mode.
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