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SYMMETRY BREAKING EFFECT ON
THE INHOMOGENEOUS CHIRAL PHASE
IN THE EXTERNAL MAGNETIC FIELD∗

Ryo Yoshiike, Toshitaka Tatsumi

Department of Physics, Kyoto University, Kyoto, Japan

(Received February 16, 2017)

We investigate the effect of the current quark mass on the inhomoge-
neous chiral phase in the QCD phase diagram, to discuss the properties of
the phase transition using the generalized Ginzburg–Landau (GL) expan-
sion. The external magnetic field spreads this phase over the low chemical
potential region even if the current quark mass is finite, which implies that
the existence of this phase can be explored by the lattice QCD simulation.
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1. Introduction

Exploring the finite density region of the QCD phase diagram is one of
the challenging issues in nuclear physics. Recently, the possible existence of
the inhomogeneous chiral phase has been actively discussed by the analysis
of some effective models. In this phase, the scalar and pseudoscalar quark
condensates spatially modulate and the complex order parameter, φ(r), rep-
resenting this phase takes the form of

φ(r) ≡
〈
ψ̄ψ
〉

+ i
〈
ψ̄iγ5τ3ψ

〉
= ∆(r)eiθ(r) . (1)

Using some inhomogeneous configurations, most analyses have shown that
the inhomogeneous chiral phase appears as an intermediate phase during
the standard chiral phase transition.

In QCD, various magnetic aspects have attracted much interest. One of
the interesting subjects is the symmetry behavior in the magnetic field (B).
It has been suggested that the chiral symmetry breaking is enhanced due
to B in the effective model, magnetic catalysis (MC). However, the recent
lattice simulations have shown inverse magnetic catalysis (IMC) at finite
temperature. This phenomenon has not been well-understood yet.
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In the magnetic field, the dual chiral density wave (DCDW) phase
(∆(r) = ∆, θ(r) = qz) is remarkably extended in the low chemical po-
tential (µ) region [1]. The energy spectrum of quarks exhibits asymmetry,
which gives rise to the distinctive phenomenon [2]. Note that complex φ(r) is
necessary for the energy spectrum to be asymmetric about zero. A peculiar
role of the spectral asymmetry can be also seen around the transition point:
it induces a new term in the thermodynamic potential and, consequently, a
new Lifshitz point should appear on the µ = 0 line in the chiral limit [2].
If this is the case, one may expect a direct observation of DCDW by a lat-
tice QCD simulations, although the extrapolation to the finite µ region is
restricted due to the sign problem.

To discuss this issue in a realistic situation, we should consider the effect
of the current quark mass. For DCDW, although no exact solution is known,
a variational method may work well in the absence of B [4]. As a conse-
quence, the function form of DCDW is largely deformed near the transition
point and, accordingly, the DCDW region of the phase diagram is reduced.
We shall follow the similar approach here and find the proper solution of
θ(r) instead of qz near the transition point in the presence of B.

2. Thermodynamic potential with finite current quark mass

The thermodynamic potential near the transition point is given by the
generalized GL expansion based on the NJL model [3]. The NJL model
Lagrangian takes the following form within the mean field approximation,

LMF = ψ̄
[
i /D −mc −m

(
cos θ(z) + iγ5τ3 sin θ(z)

)]
ψ − m2

4G
(2)

with the covariant derivative, Dµ = ∂µ + iQAµ, where Q is the electric
charge matrix in the flavor space, and the SU(2) symmetric quark mass,
mc ≡ mu = md ' 5 MeV. Here, we assume the mean field of the quark
condensates, −2Gφ(r) = meiθ(z), where m plays a role of the dynamical
quark mass, and the direction of modulation is taken to be parallel to B.

Taking the external magnetic field along the z axis, the thermodynamic
potential can be written up to the fourth order about the order parameters,
and its derivative and the first order in mc as

Ω(µ, T,B) = Ω0 +

∫
d3x

V

{
α1m cos θ +

1

2

(
α2 +

1

2G

)
m2 + α̃2m (sin θ)′

+
α3

4

[
4m3 cos θ −m (cos θ)′′

]
+ α̃3m

2θ′ +
α4

4

(
m4 −m2θθ′′

)
+3α̃4am

3 (sin θ)′ + α̃4bm (sin θ)′′′
}

(3)
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with a shorthand notation, θ′ ≡ ∂θ/∂z, where the GL coefficients depend on
µ, T and B, and Ω0 is the constant term independent of the order parame-
ters. Note that the effect ofmc appears in α1, α3, α̃2, α̃4a and α̃4b, which are
proportional to mc. The coefficients αi (i = 1–4) include a UV divergence
and the Pauli–Villars regularization is used in the present calculation.

It may be worth mentioning that the α̃3 term is originated from the
spectral asymmetry of the quark energy eigenvalues and proportional to B.
The presence of such term has been shown in the chiral limit and a close
relation to chiral anomaly has been demonstrated [2]. Note that the α̃3 term
remarkably extends the DCDW phase in the presence of B.

From the stationary condition: δΩ/δθ(z) = 0, we find the equation in
the sine-Gordon form,

θ′′ + sign
(
α1 +m2α3

)
m∗2π sin θ = 0 , (4)

with m∗2π ≡ 2 |α1+m2α3|
mα4

, and the relevant solution to Eq. (4) is obtained as

θ(z) = 2 am

(
m∗π
k
z, k

)
, (5)

where “am” is the amplitude function with modulus k ∈ [0, 1]. Then, the
wave number (Q) of condensates is defined by the relations, Q = πm∗

π
kK(k) ,

where K(k) is the complete elliptic integral of the first kind. There are two
order parameters, m and k (or Q), where m characterizes the magnitude
of SSB, and k measures a degree of the inhomogeneity. When k = 1, θ(z)
behaves like the single kink and Q vanishes. Then, we can see that the ther-
modynamic potential is reduced to the one in the homogeneous phase. On
the other hand, when k and mc simultaneously go to zero and 2m∗π/k → q,
the original DCDW phase is recovered, θ = qz. In the following, we call the
phase where 0 < k < 1,m 6= 0 the massive DCDW phase.

3. Results and discussions

In the present calculation, we use the parameter set in Ref. [5]: Λ =
851 MeV and GΛ2 = 2.87. In Fig. 1, we show the resulting phase diagram.
There are drawn the phase boundary between the massive DCDW phase and
the homogeneous phase, and the crossover line given by the pseudocritical
temperature defined as the peak of the chiral susceptibility: −∂m/∂T . In our
original paper [6], the change of the phase boundary has also been analyzed
when mc or B changes. We have found that the massive DCDW phase is
extended to the low µ region with the decrease of mc. Thus, the result
in Ref. [2] is recovered in the chiral limit. Moreover, B raises the critical
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temperature, which is consistent with MC. Consequently, we can see that B
enlarges the massive DCDW phase over the low µ and high T region even if
mc is finite.

Fig. 1. (Color online) Phase diagram at mc = 5 MeV,
√
eB = 1 GeV (left panel).

The thick black/red line describes the phase boundary between the massive DCDW
phase (shaded area) and the homogeneous phase. The solid/blue line describes the
crossover line. The conventional crossover line without the massive DCDW phase
corresponds to the dotted blue line. The right upper (lower) panel shows the value
of m (Q) at the same range of µ–T as the left panel.

To discuss the effect of IMC in the present model, it is assumed that
the effect is simulated by giving a B dependence to the coupling constant
of the NJL model (G). According to Ref. [7], G is fitted to reproduce the
result of the lattice QCD simulation [8]. In the following, we consider the
case at

√
eB = 1 GeV. The coupling constant is put as GΛ2 = 1.85. In

Fig. 2, the change of the phase boundary by IMC is shown. The region of
the massive DCDW phase shrinks and the critical temperature decreases due
to the effect. However, the massive DCDW phase survives in the µ/T < 1
region if mc is sufficiently small.

In Ref. [9], the possibility of the observation of the DCDW phase has
been discussed in the case with the singular line at µ = 0 in the chiral
limit. However, the phase boundary is moved to µ 6= 0 region due to mc.
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Fig. 2. (Color online) Phase boundary obtained including IMC. The thick gray/red
line corresponds to the phase boundary in the Fig. 1. On the other hand, the
gray/green and black/blue lines describe one at mc = 5, 1 MeV with IMC.

In the Taylor expansion method and the analytic continuation method from
imaginary µ, the singularity at µ 6= 0 cannot be described and the massive
DCDW phase cannot be grasped. In the reweighting method, the impor-
tance sampling is carried out for some parameter choice, where there is no
sign problem. Therefore, we need to find a special region with the massive
DCDW phase and no sign problem there. In the canonical approach, it may
be found that the quark number density has a discontinuity derived from
some first-order phase transition, if there is the massive DCDW phase in
µ 6= 0 region. However, the phase transition cannot be identified as one
from the homogeneous phase to the massive DCDW phase. Therefore, we
need to find some specific order parameters on the phase transition.

4. Summary and concluding remarks

We have discussed the inhomogeneous chiral phase at B 6= 0 andmc 6= 0.
It is found that B extends the massive DCDW phase over the low µ region
similar to the DCDW phase in the chiral limit though mc tends to reduce
this phase region. Within our analysis based on the NJL model, B seems to
raise the critical temperature for MC. So we tune the coupling constant of
the NJL model to estimate the qualitative influence of IMC. Consequently,
the critical temperature decreases. However, the massive DCDW phase
can develop in the region: µ/T < 1 if mc is sufficiently small. Therefore
we suggest that the inhomogeneous chiral phase can be explored by the
lattice QCD simulations by choosing some proper method, for example the
reweighting method or the canonical approach.
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