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The soft-wall model, emerging as bottom-up holographic scenario an-
chored in the AdS/CFT correspondence, displays the disappearance of nor-
malisable modes referring to vector mesons at a temperature Ty;s depending
on the chemical potential p, Tyis(pt). We explore options for making Tgis(p)
consistent with the freeze-out curve Tt, (1) from relativistic heavy-ion col-
lisions and the cross-over curve T¢(u) from QCD at small values of p.
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1. Introduction

In still lacking a convincing top—down approach from the string theory to
a proper gravity dual of QCD, one must resort to bottom-up models which
are designed to mimic certain wanted features of QCD. Among such ap-
proaches is the soft-wall model [1] as a particular realisation of the AdS/CFT
correspondence w.r.t. the hadron spectrum, especially vector mesons. While
being a phenomenological set-up, the original soft-wall model [1] can be mod-
ified to accommodate the Regge-type spectrum of radial excitations of se-
lected hadron species at vanishing temperature 7" and chemical potential p.
Extending the model further to 7" > 0, one finds that, at temperatures
T > Tyis, hadrons as normalisable states disappear [2]. It is tempting to
consider such a scenario as an emulation of deconfinement. As shown in [3],
one can tune the model further to achieve Ty = T, where T, ~ 150 MeV
is the cross-over temperature known from lattice QCD evaluations for 2 + 1
flavours with physical quark masses. There are options to let disappear
all hadron states at Tyis (instantaneous disappearance) or only the ground

* Presented by B. Kampfer at the “Critical Point and Onset of Deconfinement”
Conference, Wroctaw, Poland, May 30-June 4, 2016.

(789)



790 R. ZOLLNER, F. WUNDERLICH, B. KAMPFER

state, and excited states already disappeared in a narrow corridor below 7T¢
(sequential disappearance). For steering these details, the Hawking—Page
transition is a central issue.

Reference [3] focused on purely thermal effects. Here, we investigate
the options for Tyis(1). We provide a special modification of the soft-wall
model such as to make Tys(p) consistent with Tg,(u) and Te(u), where “fo”
labels the chemical freeze-out and “c” is for the cross over. The dependence
of Ty, on p is determined nowadays from hadron multiplicities observed in
relativistic heavy-ion collisions at varying beam energy; system size and
centrality dependencies help to consolidate the freeze-out curve Tt,(u). The
map of hadron multiplicities on the freeze-out data is provided tradition-
ally by thermo-statistical models of the hadron resonance gas [4—6], may be
supplemented by effects of inelastic, post-hadronization reactions [7]. The
results are in agreement with data analyses using mean and variance of net
baryon number and net-electric charge distributions based on lattice QCD
input [8]. On the other hand, lattice QCD provides ab initio calculations of
Tc(p), albeit restricted to a region of /T < 3 due to the sign problem.

All these attempts have the goal to pin down the QCD phase diagram
and to seek a critical point that marks the onset of a curve of first-order
phase transitions when going to larger values of u, realised experimentally
by lowing the beam energy. Experimentally, dedicated efforts are devoted
to the search for a critical point, most notably the beam energy scan at
RHIC [9-11] and the program at NA61/SHINE [12-14]. Besides many mod-
els envisaging statements on the phase diagram of strong interaction mat-
ter [15-20|, also holographic approaches are to be mentioned. These aim
essentially at mimicking the thermodynamics [21,22] rather than individual
hadron properties, but can address issues of deconfinement as well |23, 24].
Here, we report on the modified soft-wall model with regard of non-zero
temperature and non-zero chemical potential.

2. Modified soft-wall model

The model pursued here is based on the action

1

SV:—M

dzdz \/§€7¢(Z)F2 (1)

with &y chosen to render Sy dimensionless. The dilaton field @ acts as a
conformal symmetry breaker. The quantity g denotes the determinant of
the metric tensor. Equation (1) is utilised to describe the dynamics of an
U(1) vector field with the components Vs, where Fyry = Oy Vn — OnVir
(indices M, N = 0,...,4) is the field strength tensor, dual to the boundary
vector current, e.g. J, ~ qyu.q. A special five-dimensional Riemann space
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with coordinates zg 123 and holographic coordinate z is described by the
infinitesimal distance squared

1
ds? = e4(?) (f 2)dt? — dz? — dz2> , 2
(2 - 2
where A(z) is a warp function and f(z) is the blackness function, both to be
specified below. The equation of motion follows from (1), with the metric

determinant to be read off (2) and ¢ = pexp{—(A4 — ?)/2}, as
(9 = (Ur —my)) ¥ =0, (3)

where ¢ is the tortoise coordinate determined by d¢ = dz/f(z) and Uy is
the Schrodinger equivalent potential

Ur = (3 (3024 - 020) + 3 (30.4 - 0.9)°) /* + § (0.4 - 0.9) 0.1,
(4)
To arrive at (3), the Ansatz V), = €,¢(2) exp{ip, 2"} and the gauges V, =0
and 0,V# = 0 (Greek indices run in the range 0, ...,3) are employed. The
normalisable solutions of (3) determine squared vector meson masses m?2 =
pupM, where n = 0 denotes the ground state (gs) and n > 1 counts the
radial excitations, labelled with 1%, 2" etc.

In the spirit of [1], the soft-wall model sets a “soft wall” by the dilaton
profile &(z) = (cz)P with a scale ¢; we employ the warp factor A(z) =
In(L?/2% + %) with the AdS radius L = 1/c. Our Ansatz for the blackness
function is with 9(zn) = mzaT'(zu) — 1 (see Appendix A)

= < 20(zn) o\ 2exp{ 29(am)+4i% }
f(z)_l_zf‘jl(1+exp{§19(zH)+4ﬂ2} [<ZH> —1
(5)

providing from 0, f(z) |;=.y= —47T(zu) the Hawking temperature
T(eur) = Tlen) (1 - %) ©

with T(zg) = Tmin(1 + [1/2 — 2 + 2]/©), where = 2y/Zmin and © =
7T minZmin. In the special case of T(zH) = 1/(wzmu), (5) belongs to the
metric of a Reissner—Nordstrom black hole embedded in an asymptotic Anti-
de Sitter space. It is customary to identify yu = \/ﬁ/lfyzﬁl as baryo-chemical
potential and T as the temperature of the boundary theory. The parameter ~y
arises as a ratio of two coupling strengths when deriving the AdS Reissner—
Nordstrom black brane (cf. [25] and Appendix A). Equation (5) keeps the
required properties of a black hole: it has a simple zero at horizon z = zy,
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f(z=0,25) =1 and (9. f),0 = 0 for i = 1,2,3. The above parameters
¢, p and i can be tuned at T = 0 to reproduce a Regge-type spectrum

m?2 = a + Bn in agreement with the known vector meson states forming a

2 =
trajectory of radial excitations parametrised by « and S [3]. Note that, for
w =0, Eq. (5) facilitates numerical results agreeing on the sub-percent level

with those of [3].

3. Non-zero chemical potential

Depending on p, Tinin and Zmin, 1'(zm) can display a minimum of T,
at zmin which translates into Tiin(1t). If so, then (5) must be replaced by
the trivial, non-black-hole function f = 1 for all T' < T, i.e. due to the
Hawking—Page transition, the thermal gas solution is the stable configura-
tion. What remains is a selection of parameters T,in, Zmin and 7y to achieve
T5 (1) = Tro(p) = Te(p). We take the leading order shape

2
Tiol) = Tu() = Ty (1 —/-e (“) +) (7)

To

with k = 0.005...0.01 from [8] (¢f. also [7]) and put for simplicity Ty =
Te(p = 0) = 155 MeV without an error band.

The dependence of 5. follows from numerical solutions of (3) with po-
tential (4), where the u dependence comes from (5) and (6). We employ here
the parameters p = 1.99, &t = 0.5 and ¢ = 443 MeV which provide one pos-
sible setting of a Regge trajectory with o = 0.71 Ge\/2~ and = 0.75 GeV?
at T'= p = 0, as shown in [3|. The particular choice Ty, = 155 MeV and
CZmin = 2 1s for a scenario, where for 4 =0, the thermal gas solution is valid
for all temperatures T' < Tyin. That is, for T < Tinin, the vector meson spec-
trum is as at T' = 0 with the implication that the thermo-statistical model
analysis applies in that region with standard vacuum masses of hadrons. At
T > Thin, however, the black-hole solution must be accomplished. Equa-
tion (3) does not allow for normalisable solutions at T° > T, i.e. just
at T = T, min, the hadron states (here shown only for vector mesons) dis-
appear. In such a special setting, one therefore identifies both the (chiral)
cross over point and the chemical freeze-out temperature at y = 0 with
(de)confinement. We adjust the remaining parameter 7 such to put the dis-
appearance temperature of the ground state, Tfiss(,u) (upper dashed curve),
on the freeze-out/cross-over curve (solid/blue curve) in parametrisation (7).
Using the above quoted values of curvature measure x in the spirit of upper
and lower bounds, we find the results exhibited in Fig. 1. Up to a cer-
tain critical value of the chemical potential, the disappearance curve of the
lowest vector meson states is on the top of the freeze-out/cross-over curve



Ezxtended Soft-wall Model for the QCD Phase Diagram 793

for a given value of k. The related physical interpretation is that once a

cooling piece of deconfinement matter reaches Tfii’lst""(u), it hadronizes by
occupying statistically the available hadron states.
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Fig.1. (Colour on-line) QCD phase diagram with two options of the freeze-
out/cross-over curve (7) (solid/blue curves, left panel: x = 0.005, right panel:
k = 0.01); note that (7) without higher-order terms holds true only in the small-u
region. In the shaded/green areas, the thermal gas solution applies. Its upper
boundary is given by Tiin(pt). The disappearance temperatures Ty;s as a function
of p (dashed curves) of the first three vector meson states according to Eq. (3)
with potential (4) (parameters: p = 1.99, & = 0.5, ¢ = 443 MeV (cf. set 2.0 of [3]),
Tonin = 155 MéV, ¢Zmin = 2) are adjusted by v = 7.85 (left) and v = 5.55 (right).
Up to p = 620 MeV (left) or p = 440 MeV (right), all states disappear instanta-
neously at T' = Ty,,. For larger values of u, where only the black-hole solution is
valid (white regions), the third and all higher states do not exist at all (indicated
by the vertical dashed lines); the ground state and the first excited state disappear
sequentially.

The above sketched scenario can be relaxed by minor parameter varia-
tions to have T4, > T, (fst >T O%: ..., i.e. a sequential appearance of vector
meson states upon cooling. Figure 2 exhibits a possibility where the first two
states appear sequentially in a narrow corridor centred at T¢(u) for small p.
If such a behaviour can be established for other hadron species too, it is still
consistent with the application of the thermo-statistical models.

It is premature to extrapolate the described scenario to too large values
of p, and thus to critical point issues, since (i) Eq. (7) relies on the leading-
order term and (i) lacking knowledge on T¢(u), i.e. whether Ty, (1) = Te(p)
at larger values of p, and (ii) unsettled options in constructing other black-
ness functions beyond (5) and (6).
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Fig.2. As in Fig. 1 but for T, = 154 MeV, ¢Znin = 2.5, v = 8.79 (left) and
~v = 6.22 (right). For all values of u, the ground state disappears at a temperature
higher than the radial excitations. While the thermal gas solution is valid, all
excited states disappear instantaneously.

4. Summary

The famous soft-wall model 1] represents a particular realisation of ideas
anchored in the AdS/CFT correspondence. It can be modified to accommo-
date a Regge-type spectrum of radial excitations of vector mesons. Con-
sidering vector mesons as prototypical representatives of hadrons, one can
further modify such a gravity field duality model to study the fate of certain
hadron species immersed in a hot and dense ambient medium. Parameters
can be tuned to let disappear vector mesons as normalisable modes above a
temperature to be identified tentatively with “deconfinement temperature”
or, more specifically, with the chiral cross-over temperature T¢. [3], thus ex-
tending the approach in [2]. Following, e.g. [8] (see also |26]) in identifying
the chemical potential dependence of Ti.(u) with the freeze-out systematics
found from heavy-ion experiments and condensed in Tf,(u) at small u, we
have demonstrated that the suitably adopted soft-wall model allows for a
consistent scenario: Once a temperature Ty;s is reached upon cooling of a
piece of “deconfined matter”, hadrons appear, either suddenly at once or se-
quentially in a narrow corridor of temperatures, and are ready for statistical
distribution.

Appendix A

The goal is to extend the black-hole function in AdS, fgu(z) = 1 —
(z/zn)*, yielding Tgy(zn) = 1/(72n), and the Reissner-Nordstrom black-
hole function, frn(2) =1— (14 342)(2/20)* + 34%(2/21)% in AdS, yielding
Trn(zn) = (mzm) (1 = f2) [25]. Clearly, frn(2;zm, i = 0) = feu(2; 2n).
As in [3], we start from the general statement that for all positive i with
i > A(mzuT(zu) — 1) =: 4r, the function f defined by



Ezxtended Soft-wall Model for the QCD Phase Diagram 795

f@):l_i(lﬁf(zi_l)) (A1)

“H %y
is a suitable blackness function, i.e. f(z = 0,z5) = 1, (9.f).—0 = 0 for
i = 1,2,3 and the simple zero at the horizon, f(z = zg;zg) = 0. To
recover the Reissner-Nordstrém case, we observe that r = —? and i = 2
are required. To construct a proper blackness function, we can apply any
function h : R — R with h positive, h(z) > x for all x € R and h(—44%) = 2

and set i = h(4r). One possibility is h(z) = 2¢*™4* for all a > 1/2¢ which
yields (5) for a = 1/2e.
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