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EXTENDED SOFT-WALL MODEL
FOR THE QCD PHASE DIAGRAM∗
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The soft-wall model, emerging as bottom-up holographic scenario an-
chored in the AdS/CFT correspondence, displays the disappearance of nor-
malisable modes referring to vector mesons at a temperature Tdis depending
on the chemical potential µ, Tdis(µ). We explore options for making Tdis(µ)
consistent with the freeze-out curve Tfo(µ) from relativistic heavy-ion col-
lisions and the cross-over curve Tc(µ) from QCD at small values of µ.
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1. Introduction

In still lacking a convincing top–down approach from the string theory to
a proper gravity dual of QCD, one must resort to bottom-up models which
are designed to mimic certain wanted features of QCD. Among such ap-
proaches is the soft-wall model [1] as a particular realisation of the AdS/CFT
correspondence w.r.t. the hadron spectrum, especially vector mesons. While
being a phenomenological set-up, the original soft-wall model [1] can be mod-
ified to accommodate the Regge-type spectrum of radial excitations of se-
lected hadron species at vanishing temperature T and chemical potential µ.
Extending the model further to T > 0, one finds that, at temperatures
T ≥ Tdis, hadrons as normalisable states disappear [2]. It is tempting to
consider such a scenario as an emulation of deconfinement. As shown in [3],
one can tune the model further to achieve Tdis = Tc, where Tc ≈ 150 MeV
is the cross-over temperature known from lattice QCD evaluations for 2 + 1
flavours with physical quark masses. There are options to let disappear
all hadron states at Tdis (instantaneous disappearance) or only the ground
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state, and excited states already disappeared in a narrow corridor below Tc
(sequential disappearance). For steering these details, the Hawking–Page
transition is a central issue.

Reference [3] focused on purely thermal effects. Here, we investigate
the options for Tdis(µ). We provide a special modification of the soft-wall
model such as to make Tdis(µ) consistent with Tfo(µ) and Tc(µ), where “fo”
labels the chemical freeze-out and “c” is for the cross over. The dependence
of Tfo on µ is determined nowadays from hadron multiplicities observed in
relativistic heavy-ion collisions at varying beam energy; system size and
centrality dependencies help to consolidate the freeze-out curve Tfo(µ). The
map of hadron multiplicities on the freeze-out data is provided tradition-
ally by thermo-statistical models of the hadron resonance gas [4–6], may be
supplemented by effects of inelastic, post-hadronization reactions [7]. The
results are in agreement with data analyses using mean and variance of net
baryon number and net-electric charge distributions based on lattice QCD
input [8]. On the other hand, lattice QCD provides ab initio calculations of
Tc(µ), albeit restricted to a region of µ/T < 3 due to the sign problem.

All these attempts have the goal to pin down the QCD phase diagram
and to seek a critical point that marks the onset of a curve of first-order
phase transitions when going to larger values of µ, realised experimentally
by lowing the beam energy. Experimentally, dedicated efforts are devoted
to the search for a critical point, most notably the beam energy scan at
RHIC [9–11] and the program at NA61/SHINE [12–14]. Besides many mod-
els envisaging statements on the phase diagram of strong interaction mat-
ter [15–20], also holographic approaches are to be mentioned. These aim
essentially at mimicking the thermodynamics [21,22] rather than individual
hadron properties, but can address issues of deconfinement as well [23, 24].
Here, we report on the modified soft-wall model with regard of non-zero
temperature and non-zero chemical potential.

2. Modified soft-wall model

The model pursued here is based on the action

SV = − 1

4kV

∫
dz d4x

√
ge−Φ(z)F 2 (1)

with kV chosen to render SV dimensionless. The dilaton field Φ acts as a
conformal symmetry breaker. The quantity g denotes the determinant of
the metric tensor. Equation (1) is utilised to describe the dynamics of an
U(1) vector field with the components VM , where FMN = ∂MVN − ∂NVM
(indices M,N = 0, . . . , 4) is the field strength tensor, dual to the boundary
vector current, e.g. Jµ ∼ q̄γµq. A special five-dimensional Riemann space
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with coordinates x0,1,2,3 and holographic coordinate z is described by the
infinitesimal distance squared

ds2 = eA(z)
(
f(z)dt2 − d~x 2 − 1

f(z)
dz2
)
, (2)

where A(z) is a warp function and f(z) is the blackness function, both to be
specified below. The equation of motion follows from (1), with the metric
determinant to be read off (2) and ψ = ϕ exp{−(A− Φ)/2}, as(

∂2ξ −
(
UT −m2

n

))
ψ = 0 , (3)

where ξ is the tortoise coordinate determined by dξ = dz/f(z) and UT is
the Schrödinger equivalent potential

UT =
(
1
2

(
1
2∂

2
zA− ∂2zΦ

)
+ 1

4

(
1
2∂zA− ∂zΦ

)2)
f2 + 1

4

(
1
2∂zA− ∂zΦ

)
∂zf

2 .

(4)
To arrive at (3), the Ansatz Vµ = εµϕ(z) exp{ipνxν} and the gauges Vz = 0
and ∂µV µ = 0 (Greek indices run in the range 0, . . . , 3) are employed. The
normalisable solutions of (3) determine squared vector meson masses m2

n =
pMp

M , where n = 0 denotes the ground state (gs) and n ≥ 1 counts the
radial excitations, labelled with 1st, 2nd, etc.

In the spirit of [1], the soft-wall model sets a “soft wall” by the dilaton
profile Φ(z) = (cz)p with a scale c; we employ the warp factor A(z) =
ln(L2/z2 + µ̃2) with the AdS radius L = 1/c. Our Ansatz for the blackness
function is with ϑ(zH) = πzHT (zH)− 1 (see Appendix A)

f(z) = 1− z4

z4H

(
1 +

2ϑ(zH)

exp
{
2
eϑ(zH) + 4µ̂2

} [( z

zH

)2 exp{ 2
e
ϑ(zH)+4µ̂2}

− 1

])
(5)

providing from ∂zf(z) |z=zH= −4πT (zH) the Hawking temperature

T (zH) = T̃ (zH)
(
1− µ̂2

)
(6)

with T̃ (zH) = T̃min(1 + [1/x − 2 + x]/Θ), where x = zH/z̃min and Θ =

πT̃minz̃min. In the special case of T̃ (zH) = 1/(πzH), (5) belongs to the
metric of a Reissner–Nordström black hole embedded in an asymptotic Anti-
de Sitter space. It is customary to identify µ =

√
2µ̂γz−1H as baryo-chemical

potential and T as the temperature of the boundary theory. The parameter γ
arises as a ratio of two coupling strengths when deriving the AdS Reissner–
Nordström black brane (cf. [25] and Appendix A). Equation (5) keeps the
required properties of a black hole: it has a simple zero at horizon z = zH,
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f(z = 0, zH) = 1 and (∂izf)z→0 = 0 for i = 1, 2, 3. The above parameters
c, p and µ̃ can be tuned at T = 0 to reproduce a Regge-type spectrum
m2
n = α + βn in agreement with the known vector meson states forming a

trajectory of radial excitations parametrised by α and β [3]. Note that, for
µ = 0, Eq. (5) facilitates numerical results agreeing on the sub-percent level
with those of [3].

3. Non-zero chemical potential

Depending on µ, T̃min and z̃min, T (zH) can display a minimum of Tmin

at zmin which translates into Tmin(µ). If so, then (5) must be replaced by
the trivial, non-black-hole function f = 1 for all T < Tmin, i.e. due to the
Hawking–Page transition, the thermal gas solution is the stable configura-
tion. What remains is a selection of parameters T̃min, z̃min and γ to achieve
T gs
dis(µ) ∼= Tfo(µ) ∼= Tc(µ). We take the leading order shape

Tfo(µ) ∼= Tc(µ) ∼= T0

(
1− κ

(
µ

T0

)2

+ . . .

)
(7)

with κ = 0.005 . . . 0.01 from [8] (cf. also [7]) and put for simplicity T0 =
Tc(µ = 0) = 155 MeV without an error band.

The dependence of T gs
dis follows from numerical solutions of (3) with po-

tential (4), where the µ dependence comes from (5) and (6). We employ here
the parameters p = 1.99, µ̃ = 0.5 and c = 443 MeV which provide one pos-
sible setting of a Regge trajectory with α = 0.71 GeV2 and β = 0.75 GeV2

at T = µ = 0, as shown in [3]. The particular choice T̃min = 155 MeV and
cz̃min = 2 is for a scenario, where for µ = 0, the thermal gas solution is valid
for all temperatures T < T̃min. That is, for T < T̃min, the vector meson spec-
trum is as at T = 0 with the implication that the thermo-statistical model
analysis applies in that region with standard vacuum masses of hadrons. At
T > T̃min, however, the black-hole solution must be accomplished. Equa-
tion (3) does not allow for normalisable solutions at T > T̃min, i.e. just
at T = T̃min, the hadron states (here shown only for vector mesons) dis-
appear. In such a special setting, one therefore identifies both the (chiral)
cross over point and the chemical freeze-out temperature at µ = 0 with
(de)confinement. We adjust the remaining parameter γ such to put the dis-
appearance temperature of the ground state, T gs

dis(µ) (upper dashed curve),
on the freeze-out/cross-over curve (solid/blue curve) in parametrisation (7).
Using the above quoted values of curvature measure κ in the spirit of upper
and lower bounds, we find the results exhibited in Fig. 1. Up to a cer-
tain critical value of the chemical potential, the disappearance curve of the
lowest vector meson states is on the top of the freeze-out/cross-over curve
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for a given value of κ. The related physical interpretation is that once a
cooling piece of deconfinement matter reaches T gs,1st,...

dis (µ), it hadronizes by
occupying statistically the available hadron states.

Fig. 1. (Colour on-line) QCD phase diagram with two options of the freeze-
out/cross-over curve (7) (solid/blue curves, left panel: κ = 0.005, right panel:
κ = 0.01); note that (7) without higher-order terms holds true only in the small-µ
region. In the shaded/green areas, the thermal gas solution applies. Its upper
boundary is given by Tmin(µ). The disappearance temperatures Tdis as a function
of µ (dashed curves) of the first three vector meson states according to Eq. (3)
with potential (4) (parameters: p = 1.99, µ̃ = 0.5, c = 443 MeV (cf. set 2.0 of [3]),
T̃min = 155 MeV, cz̃min = 2) are adjusted by γ = 7.85 (left) and γ = 5.55 (right).
Up to µ = 620 MeV (left) or µ = 440 MeV (right), all states disappear instanta-
neously at T = Tmin. For larger values of µ, where only the black-hole solution is
valid (white regions), the third and all higher states do not exist at all (indicated
by the vertical dashed lines); the ground state and the first excited state disappear
sequentially.

The above sketched scenario can be relaxed by minor parameter varia-
tions to have T gs

dis > T 1st

dis > T 2nd

dis . . . , i.e. a sequential appearance of vector
meson states upon cooling. Figure 2 exhibits a possibility where the first two
states appear sequentially in a narrow corridor centred at Tc(µ) for small µ.
If such a behaviour can be established for other hadron species too, it is still
consistent with the application of the thermo-statistical models.

It is premature to extrapolate the described scenario to too large values
of µ, and thus to critical point issues, since (i) Eq. (7) relies on the leading-
order term and (ii) lacking knowledge on Tc(µ), i.e. whether Tfo(µ) ∼= Tc(µ)
at larger values of µ, and (iii) unsettled options in constructing other black-
ness functions beyond (5) and (6).
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Fig. 2. As in Fig. 1 but for T̃min = 154 MeV, cz̃min = 2.5, γ = 8.79 (left) and
γ = 6.22 (right). For all values of µ, the ground state disappears at a temperature
higher than the radial excitations. While the thermal gas solution is valid, all
excited states disappear instantaneously.

4. Summary

The famous soft-wall model [1] represents a particular realisation of ideas
anchored in the AdS/CFT correspondence. It can be modified to accommo-
date a Regge-type spectrum of radial excitations of vector mesons. Con-
sidering vector mesons as prototypical representatives of hadrons, one can
further modify such a gravity field duality model to study the fate of certain
hadron species immersed in a hot and dense ambient medium. Parameters
can be tuned to let disappear vector mesons as normalisable modes above a
temperature to be identified tentatively with “deconfinement temperature”
or, more specifically, with the chiral cross-over temperature Tc [3], thus ex-
tending the approach in [2]. Following, e.g. [8] (see also [26]) in identifying
the chemical potential dependence of Tc(µ) with the freeze-out systematics
found from heavy-ion experiments and condensed in Tfo(µ) at small µ, we
have demonstrated that the suitably adopted soft-wall model allows for a
consistent scenario: Once a temperature Tdis is reached upon cooling of a
piece of “deconfined matter”, hadrons appear, either suddenly at once or se-
quentially in a narrow corridor of temperatures, and are ready for statistical
distribution.

Appendix A

The goal is to extend the black-hole function in AdS, fBH(z) = 1 −
(z/zH)4, yielding TBH(zH) = 1/(πzH), and the Reissner–Nordström black-
hole function, fRN(z) = 1− (1 + 1

2 µ̂
2)(z/zH)4 + 1

2 µ̂
2(z/zH)6 in AdS, yielding

TRN(zH) = (πzH)−1(1 − µ̂2) [25]. Clearly, fRN(z; zH, µ̂ = 0) = fBH(z; zH).
As in [3], we start from the general statement that for all positive i with
i > 4(πzHT (zH)− 1) =: 4r, the function f defined by
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f(z) = 1− z4

z4H

(
1 +

4r

i

(
zi

ziH
− 1

))
(A.1)

is a suitable blackness function, i.e. f(z = 0, zH) = 1, (∂izf)z→0 = 0 for
i = 1, 2, 3 and the simple zero at the horizon, f(z = zH; zH) = 0. To
recover the Reissner–Nordström case, we observe that r = −µ̂2 and i = 2
are required. To construct a proper blackness function, we can apply any
function h : R→ R with h positive, h(x) > x for all x ∈ R and h(−4µ̂2) = 2

and set i = h(4r). One possibility is h(x) = 2eax+4µ̂2 for all a ≥ 1/2e which
yields (5) for a = 1/2e.
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