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INHOMOGENEOUS CHIRAL CONDENSATES
IN THE QCD PHASE DIAGRAM:

CRITICAL OR LIFSHITZ POINT?∗
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We discuss how the phase diagram of strong interaction matter is modi-
fied if inhomogeneous chiral condensates are allowed to form. In particular,
we investigate the appearance of a Lifshitz point and the fate of the critical
point in presence of an inhomogeneous phase.
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1. Introduction

The study of the phase diagram of quantum chromodynamics (QCD)
is the object of intense investigations both from theory and experiments.
While thanks to ab initio lattice calculations and heavy-ion collisions the
properties of matter at finite temperatures and vanishing densities are now
understood quite well, there is no consensus yet on the QCD phase struc-
ture at finite chemical potentials. In this region, no ab initio simulations are
yet feasible, and most of our understanding comes from calculations per-
formed within effective models. Of particular interest is the nature of the
phase transition related to chiral symmetry, which is spontaneously broken
in vacuum through the formation of a quark–antiquark condensate. At low
temperatures, as the density of the system increases, the standard expec-
tation corroborated by most model predictions is that chiral symmetry is
restored via a first-order transition. Since, on the other hand, lattice results
agree on the fact that at vanishing densities, there is no phase transition
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but rather a smooth crossover, this first-order phase boundary would have
to end at a critical point (CP), which would then act as a cornerstone of the
phase diagram.

On the other hand, the models predicting a first-order phase transi-
tion usually assume that the order parameter is spatially homogeneous. If
this assumption is relaxed, several calculations within different frameworks
suggest that an inhomogeneous phase with spatially modulated chiral con-
densates appears in the phase diagram, completely covering the first-order
phase boundary of the homogeneous analysis (see [1] for a recent review).
As a result, the CP could be replaced by a “Lifshitz point” (LP) at which
the inhomogeneous phase and the two homogeneous phases with broken and
restored chiral symmetry meet.

This leads to the question whether these model results are general fea-
tures, which may then indicate a similar behavior in QCD, or whether they
strongly depend on details of the models. In this contribution, we will there-
fore summarize the main results about the positions of CP and LP obtained
within different effective chiral models of QCD and some of their common
extensions.

2. Inhomogeneous phases and the Lifshitz point

Inhomogeneous chiral condensates have been studied within effective
models such as the Nambu–Jona-Lasinio (NJL) model or the Quark–Meson
(QM) model (Gell-Mann–Lévy model or linear sigma model with quarks).
Within the mean-field approximation, the determination of the thermody-
namic potential per unit volume at finite temperature and chemical potential
for these models involves a functional trace over the inverse quark propaga-
tor, which depends on the scalar and pseudoscalar condensates (S and P ,
respectively). From a technical point of view, this trace becomes extremely
involved if the mean-fields are allowed to be space-dependent, as the re-
sulting quark Hamiltonian is no longer diagonal in momentum space. The
problem has, therefore, not yet been solved in full generality, and one typ-
ically resorts to simplified Ansätze for the spatial dependence of the order
parameters.

An alternative approach which can provide useful information on the
nature of the CP and LP without specifying the functional form of the
spatial modulation is a Ginzburg–Landau (GL) expansion of the thermo-
dynamic potential Ω. For this, the thermodynamic potential Ω is ex-
panded in powers of a small order parameter (a so-called “mass function”)
M(x) = m− 2G(S(x) + iP (x)) and its derivatives
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Ω(M) = Ω(0) +
1

V

∫
d3x

{
1

2
γ2|M(x)|2

+
1

4

(
γ4,a|M(x)|4 + γ4,b|∇M(x)|2

)
+ . . .

}
, (1)

where odd terms vanish in the chiral limit because of chiral and rotational
symmetry. Higher-order terms, which are indicated by the ellipsis, are im-
portant for the stability of the system and therefore assumed to be positive.

The GL coefficients are functions of temperature and chemical poten-
tial and thus determine the phase structure of the model. In particular, if
γ4,b > 0, gradients of the mass function are disfavored and the analysis is
reduced to the well-known case for homogeneous phases. One finds that
the CP, where the first-order phase transition turns into second order, is
determined by the condition

CP : γ2(T, µ) = γ4,a(T, µ) = 0 . (2)

For γ4,b < 0, on the other hand, inhomogeneous solutions, i.e., solutions
with non-zero gradients can become favored. One thus finds that the LP,
where the homogeneous chirally broken and restored phases meet with the
inhomogeneous one is given by the condition

LP : γ2(T, µ) = γ4,b(T, µ) = 0 . (3)

The GL coefficients for the standard NJL model with scalar and pseu-
doscalar interactions have been calculated in [2], generalizing similar analy-
ses from the 1 + 1 dimensional Gross–Neveu model [3] to 3 + 1 dimensions.
The remarkable result was that the two fourth-order coefficients are equal,
that is γ4,a = γ4,b, and therefore the LP coincides with the CP. The first-
order transition line becomes then entirely covered by an inhomogeneous
phase.

At this point, one might wonder about the robustness of this result. As
already mentioned, GL analyses are rather general, in the sense that the
specific form of the modulation does not need to be specified. Moreover,
the result γ4,a = γ4,b is independent of the choice of model parameters.
It could however depend on the approximation scheme (here: mean-field
approximation) and on the chosen model.

To investigate the dependence on the latter, in [4] some common exten-
sions of the NJL model have been considered. As known since a long time,
the inclusion of vector interactions has a very large effect on the CP, shifting
its position to lower temperatures and eventually leading to its disappear-
ance once the vector coupling GV becomes sufficiently large [5]. It turned
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out, however, that the behavior of the LP is rather different. In fact, the
effect of the vector interaction on the GL coefficients associated with this
point simply amounts to an effective shift in the chemical potential

γ2 (T, µ;GV) = γ2 (T, µ̃;GV = 0) , (4)
γ4,b (T, µ;GV) = γ4,b (T, µ̃;GV = 0) (5)

with
µ̃ = µ− 2GVn (6)

and n being the quark number density of the system. As a result, the LP is
only shifted to higher chemical potentials, staying at the same temperature.
On the other hand, the effect of the vector interaction on the GL coefficient
γ4,a, which is relevant for the CP, cannot simply be expressed through a
chemical-potential shift. In this case, an additional correction term arises,
leading to the already mentioned temperature shift of the CP as a function
of GV. CP and LP thus split, as shown in Fig. 1 (left). Note, however, that
the presence of the inhomogeneous phase may invalidate the GL analysis
for the CP. In fact, for any GV > 0 the would-be CP lies inside of the
inhomogeneous phase and has thus disappeared from the phase diagram.
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Fig. 1. (Color online) Position of the CP (black squares) and LP (blue dots) in the
phase diagram. Left: effect of vector interactions in the NJL model (results are
shown for different ratios GV/G). Right: effect of different mσ in the QM model
(results are shown for different ratios mσ/2Mq).

The inclusion of an effective coupling with the Polyakov loop was also
discussed in [4] within a PNJL model calculation. The main effect resulting
from this model extension was found to be a stretch of the phase diagram
in the T direction, leading to a shift of both, CP and LP, towards higher
temperatures. A GL analysis suggests that the two points also split in this
case, most likely in the opposite direction, so that the CP lies slightly outside
of the inhomogeneous region if vector interactions are switched off. However,
the exact determination of the coefficients turns out to be more cumbersome,
and the net effect is numerically very small.
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Finally, we discuss the relationship between the CP and LP in the QM
model. This can also be performed within a GL analysis, as was done in [6]
and [7]. The difference with the NJL model lies in an additional contri-
bution to the GL coefficients given by the meson potential, which replaces
the condensate term present in the NJL model and depends on the QM
model parameters. The latter are fitted to reproduce vacuum phenomenol-
ogy, typically represented by the pion decay constant fπ, the constituent
quark mass Mq and the sigma meson mass mσ. It was found that in the
QM model, the positions of the CP and LP coincide only if the relation
mσ = 2Mq (which is automatically fulfilled in the NJL model!) is enforced
when fitting the parameters. More precisely, the splitting of the GL coeffi-
cients associated with the CP and LP is given by

γ4,a − γ4,b = 2

(
m2
σ

4M2
q

− 1

)(
f2π
M2
q

− 1

2
δL2

(
m2
σ

))
, (7)

where δL2 is a finite loop integral, and the quantity in the first parenthesis
vanishes when mσ = 2Mq. The resulting splitting of the two points for
different values of the ratio mσ/2Mq is shown in Fig. 1 (right).

3. Discussion

We have discussed the behavior of the CP and LP in the phase diagrams
of various QCD-inspired models, allowing for an inhomogeneous phase where
the chiral condensate is spatially non-uniform. While a GL analysis of the
standard NJL model with scalar and pseudoscalar interactions reveals that
the two points coincide, this result is not stable with respect to extensions
or modifications of the model. In particular, their positions are extremely
sensitive to the ratiomσ/2Mq in the QMmodel and to the value of the vector
coupling constant. From this, one might conclude that the coincidence of
CP and LP in the standard NJL model is merely an accident. However, in
a Dyson–Schwinger QCD study, which was performed in Ref. [8], CP and
LP also seem to agree, at least within numerical accuracy. A more careful
investigation of this result in terms of a GL-like analysis would certainly be
interesting.
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