
Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 3

EXPLORING THE IN-MEDIUM MOMENTUM
DEPENDENCE OF THE DYNAMICAL QUARK MASS∗

Mateusz Cierniaka, Thomas Klähna,b

aDivision of Elementary Particle Theory, Institute of Theoretical Physics
University of Wrocław

pl. M. Borna 9, 50-204 Wrocław, Poland
bDepartment of Physics and Astronomy, California State University Long Beach

1250 Bellflower Blvd., Long Beach, CA 90840 USA

(Received April 26, 2017)

We review the two standard equations of states based on the Nambu–
Jona-Lasinio (NJL) model and the thermodynamic bag (tdBag) model for
dense, cold quark matter from a perspective based on the Dyson–Schwinger
(DS) formalism. A different, but technically not more complicated approx-
imation reproduces the model of Munczek and Nemirovsky (MN) which
accounts in a simplified way for chiral symmetry breaking and confinement
as a dynamic process rooted in the momentum dependence of QCD model
gap solutions. We review the mass gap solutions for the MN model in the
chiral limit and sketch the behavior of mass gap solutions for finite bare
quark masses at the finite chemical potential.
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1. Introduction

It is believed that QCD is the correct theory of strongly interacting mat-
ter. Key properties of QCD that need to be addressed in a realistic model
are confinement and chiral symmetry breaking. Both of these effects are an
important aspect of the strong interaction which is probed in heavy-ion col-
lisions and increasingly so by astrophysical observations. The latter provide
an interesting alternative to test our knowledge regarding the equation of
state of nuclear matter and the expected QCD phase transition to a quark–
gluon plasma [1]. Lattice QCD calculations provide insight into the QCD
phase space at high temperatures in vacuum or at low baryochemical poten-
tial. They fail when the quark chemical potential exceeds the temperature
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by far, as it is given in compact stars. The Dyson–Schwinger approach to
QCD is applicable in the entire temperature-density domain. It requires an
appropriate truncation scheme, since the explicit set of Dyson–Schwinger
equations is infinite and thus, in the strict sense, unsolvable. In this brief
review, we emphasize the fact that the NJL model [2,3] as one of the state of
the art equations of state can be easily understood in terms of DS equations
within a set of very simple approximations. The price for the convenient
description of chiral symmetry breaking is paid for with the absence of any
momentum dependence of the DS gap functions which reflects the well-
known fact that the NJL model does not exhibit confinement. Once chiral
symmetry is restored, the NJL mass gap solution provides a nearly constant
quark mass which is much smaller than the quark chemical potential in this
domain. Consequently, the equation of state is well-approximated by an
ideal relativistic Fermi gas shifted by a constant offset with respect to the
pressure and energy density respectively [4,5]. Formally, this corresponds to
the behaviour described by the thermodynamic bag model [6]. None of these
two effective models has mass gap solutions with a non-trivial momentum
dependence, viz. solutions other than constant or zero for any momentum at
any given density. Consequently, within these models, a confinement crite-
rion that implies the absence of quark mass poles is impossible to account for
and the deconfinement transition has to be modelled by imposing additional
assumptions. We review properties of the similarly simple but confining MN
model in the chiral limit [7], and explore mass gap solutions at finite bare
quark masses and finite chemical potential. Computations like these are a
prerequisite to study the quark matter EoS within the MN model beyond
those currently available in the chiral limit [8, 9].

2. Dyson–Schwinger equations

The in-medium, dressed-quark propagator maintains the structure of a
free, relativistic Fermion propagator

S
(
p2, p̃4

)−1
= i~γ~pA

(
p2, p̃4

)
+ iγ4p̃4C

(
p2, p̃4

)
+B

(
p2, p̃4

)
, (1)

with p̃4 = p4 + iµ. Evidently, the gap functions A, B, and C account for
non-ideal behaviour due to interactions. Unlike in vacuum studies, the gaps
are complex valued and A and C gap are degenerate (A = C holds strictly
under vacuum conditions). In order to obtain the propagator, one solves the
gap equation

S
(
p2, p̃4

)−1
= i~γ · ~p+ iγ4p̃4 +m+Σ

(
p2, p̃4

)
, (2)

Σ
(
p2, p̃4

)
=

∫
d4q

(2π)4
g2(µ)Dρσ(p− q, µ)

λa

2
γρS

(
q2, q̃4

)
Γ aσ (q, p, µ) ,
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where m is the bare mass, Dρσ(k, µ) is the dressed-gluon propagator and
Γ aσ (q, p, µ) is the dressed-quark-gluon vertex. Naturally, at the level of the
self energy Σ(p2, p̃4), approximations can be made in order to simplify the
gap equations. In all following discussions, we impose

Γ aσ (q, p) = 1
2λ

aγσ (3)

for the vertex and thus define a rainbow gap equation, which is the leading
order in a systematic, symmetry-preserving DSE truncation scheme [10,11].

We can now introduce NJL and MN model in terms of different choices
for the effective gluon propagator.

3. NJL and tdBag model

The NJL model can be strictly understood in terms of a contact interac-
tion in configuration space provided by the gluon propagator. Transformed
into momentum space, this reads as a constant, momentum-independent
coupling. As a consequence, this model is ultraviolet divergent if no regular-
isation is performed. In the spirit of the standard NJL approach, we perform
a hard cut-off in the UV and express the effective gluon propagator as

g2Dρσ(p− q) =
1

m2
G

Θ
(
Λ2 − ~q 2

)
δρσ . (4)

The Heaviside function Θ provides a 3-momentum cut-off for space-like mo-
menta ~p 2 > Λ2. This is sufficient to regularize all ultraviolet divergences in-
herent to Σ(p2, p̃4). Different regularisation procedures are available and, in
fact, the regularisation scheme does not have to affect ultraviolet divergences
only, e.g., IR cut-off schemes can remove unphysical implications [12]. How-
ever, the chosen hard cut-off scheme reproduces standard NJL model results
and allows to match them to tdBAG, i.e. to describe quarks as a quasi-ideal
gas of fermions. mG is a gluon mass scale which in this model simply defines
the coupling strength. These approximations are sufficient to write the gap
equations. For the A gap follows the trivial, medium-independent solution,
A = 1. The remaining gap equations take the following form:

Bp = m+
16Nc

9m2
G

∫
Λ

d4q

(2π)4
Bq

~q 2A2
q + q̃ 2

4 C
2
q +B2

q

, (5)

p̃ 2
4 Cp = p̃ 2

4 +
8Nc

9m2
G

∫
Λ

d4q

(2π)4
p̃4q̃4Cq

~q 2A2
q + q̃ 2

4 C
2
q +B2

q

. (6)

The integrals do not explicitly depend on the external momentum p and,
consequently, both gap solutions are constant at any given µ. Both equations
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can be recasted

B = m+
4Nc

9m2
G

ns (µ∗, B) , (7)

µ = µ∗ +
2Nc

9m2
G

nv (µ∗, B) (8)

in terms of the single-flavour scalar and vector densities, ns and nv, of an
ideal spin-degenerate Fermi gas

ns = 2
∑
±

∫
Λ

d3~p

(2π)3
B

E

(
1

2
− 1

1 + exp (E±/T )

)
, (9)

nv = 2
∑
±

∫
Λ

d3~p

(2π)3
∓1

1 + exp (E±/T )
, (10)

with E2 = ~p 2 + B2 and E± = E ± µ∗. The merit of the NJL model
is the ability to describe chiral symmetry breaking as the formation of a
scalar condensate, and chiral symmetry restoration as the melting of the
same. It should be kept in mind though that it is the scalar density which
requires UV regularisation and, in that sense, chiral symmetry breaking can
be considered as the most sensitive part of the model.

The next information the latter equations provide is not new. The NJL
model describes quarks as quasi-ideal particles with corresponding quasi-
particle poles. Confinement is not accounted for. In [4], it has been pointed
out how this can be understood as a reason for the fact that NJL models
typically provide a larger bag constant than, e.g., the MIT-bag model would
require. The NJL model does not ‘bind’. Adding or better subtracting
the missing binding energy per volume to the equation of state can lead to
interesting results over the whole phase diagram, as illustrated in [5].

4. MN model

The underlying approximation for this model is a gluon propagator with
constant strength over the whole configuration space. The momentum-
dependent Fourier transform of this object therefore reads as

g2Dρσ(k) = 3π4η2δρσδ(4)(k) , (11)

with η representing the strength of the effective interaction. The Ansatz
was proposed in [7] and extended for a non-zero chemical potential in [9].
In both cases, the considerations were limited to chiral quarks. Although
the assumption of a model with support only at p = 0, hence only infrared
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strength, is certainly peculiar and it results in a model with interesting fea-
tures: (i) it is UV-finite and does not require regularisation or renormalisa-
tion and it has (ii) momentum-dependent gaps which give access to distinct
phases one can interpret as confined/chirally broken and deconfined/chirally
restored.

In the chiral limit, the non-perturbative, chiral symmetry preserving
solution of the gap equation is Â(p2, p̃4) = Ĉ(p2, p̃4)

Ĉ
(
p2, p̃4

)
=

1

2

(
1 +

√
1 +

2η2

p̃ 2

)
, B̂

(
p2, p̃4

)
≡ 0 , (12)

where p̃ 2 = ~p 2+(p4+iµ)2. Here, chiral symmetry is realized in the Wigner–
Weyl mode and the quark is not confined.

The gap equation also has a confining solution with dynamically broken
chiral symmetry for m = 0

C
(
p2, p · u

)
=

{
2 Re

(
p̃ 2
)
< η2

4 ,
1
2

(
1 +

√
1 + 2η2

p̃ 2

)
otherwise ,

(13)

B
(
p2, p · u

)
=

{ √
η2 − 4p̃ 2 Re

(
p̃ 2
)
< η2

4 ,
0 otherwise .

(14)

Here, chiral symmetry is realised in the Nambu–Goldstone mode. Confine-
ment is signalled by a square-root branch point at p̃ 2 = η2/4, associated
with the scalar piece of the self energy. For µ 6= 0, it occurs at p4 = 0,
~p 2 = µ2 + η2/4.

5. MN mass gaps for non-chiral bare quarks

Imposing an explicit finite bare mass term, the mass gap equation can
be fully expressed in terms of the free variables, taking the polynomial form

B4 +mB3 +B2
(
4p̃ 2 −m2 − η2

)
−mB

(
4p̃ 2 +m2 + 2η2

)
− η2m2 = 0 .

(15)

Note that this prescription differs from the original vacuum result provided
in [10] only by the appearance of the chemical potential, p4 → p̃4 = p4 + iµ
in p2 = ~p 2 + p24. Evidently, this is sufficient to generate complex mass gap
solutions. The four solutions of this polynomial equation are the possible
quark effective masses. Their momentum dependence in vacuum is shown
in Fig. 1. The top left figure shows a good agreement with analytical chiral
limit results in [9] with a clear discontinuous transition from a massive to
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Fig. 1. (Colour on-line) The solution of MN gap equations as a function of momen-
tum (with µ = p4 = 0). Darker (blue) colour represents real solutions and lighter
(red) complex ones. Top left — chiral quark (m = 0), top right — up quark (m = 3

MeV), bottom left — down quark (m = 5 MeV), bottom right — strange quark
(m = 100 MeV). All values in [GeV/η].

a massless branch. The addition of non-zero bare mass changes the qual-
itative behaviour of the solutions, as the high–low mass transition is now
smooth. Furthermore, one of the chiral solutions appears to be degenerate.
This degeneracy is lost for a finite bare mass. Despite this, small bare mass
solutions show approximate agreement with the chiral solutions, especially
for the positive branch. This illustrates the impact of dynamic chiral sym-
metry breaking on the effective mass of massive quarks and justifies the
approximation of light quarks as massless, at the same time showing that
such an approximation is increasingly questionable for quarks with masses
of the order of 0.1 GeV and above.

The effective mass is sensitive to both, energy and chemical potential,
as illustrated in Fig. 2 for the positive mass branch. The non-zero mass
solutions exhibit a sharp transition at high 3-momentum and finite energy.
This transition is not observed in the chiral limit or in the case of zero energy.
The effect of increasing the chemical potential is an increased value of the
mass gap value at all momenta.
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Fig. 2. The solution of MN gap equations as a function of momentum for various
energies and chemical potentials. The solution of MN gap equations as a function
of momentum for varying p4 (left) and µ (right). Thin lines — m = 0, bold lines
— m = 5 MeV. All values in [GeV].

6. Conclusions

The results presented in this work show the remarkable utility of the
Dyson–Schwinger equations in deriving in-medium properties of a theory,
a task notoriously difficult using lattice methods. Two models of a gluon
propagator were used, NJL (or bag-like) models with constant interaction
strength in momentum space and the MN model with infrared strength only.
The former was used as a proof-of-concept test for the Dyson–Schwinger for-
malism and has shown a good agreement with existing effective models. The
latter, an extension of the model proposed by [7], gave the opportunity to
study quark properties in-medium. The results have shown a good agree-
ment with previous studies of this model [9]. Further, the model has a
rich structure when combining non-zero bare quark mass, finite energy and
chemical potential. The results underline the importance of infrared inter-
actions on the properties of strongly interacting matter and warrant a more
in-depth study of this models possible extensions.
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