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We discuss cold dense QCD by examining constraints from neutron
stars, nuclear experiments, and QCD calculations at low and high baryon
density. The two solar mass constraint and suggestive small radii (∼ 10–
13 km) of neutron stars constrain the strength of hadron–quark matter
phase transitions. Assuming the adiabatic continuity from hadronic to
quark matter, we use a schematic quark model for hadron physics and
examine the size of medium coupling constants. We find that to baryon
density, nB ∼ 10n0 (n0: nuclear saturation density), the model coupling
constants should be as large as in the vacuum, indicating that gluons remain
non-perturbative even after the quark matter formation.
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1. Introduction

The relativistic heavy-ion collisions at the RHIC and LHC, together
with the lattice Monte-Carlo simulations, allow us quantitative studies of
the phase diagram at high temperature and low baryon density. There the
QCD phase transition is known to be a crossover in which a hadronic matter
continuously transforms into a quark–gluon plasma. Then it also raises a
question on the nature of hadron–quark phase transitions at low tempera-
ture and high baryon density. The questions addressed in this article are:
(i) What is the nature of hadron–quark matter phase transitions? (ii) How
does the gluon dynamics change as density increases? (iii) What kind of
many-body correlations emerge at high baryon density? We try to get some
hints to answer these questions by studying equations of state which are
nowadays strongly constrained by neutron star observations [1–3], nuclear
physics [5, 6], and QCD calculations at low- [7] and high-density [8] limits.
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2. Constraints from theories and observations
There are theoretical guides from QCD calculations. At low density, re-

alistic nuclear potentials, combined with the sophisticated many-body cal-
culations [7], are able to explain the properties of light nuclei and nuclear
matter in a good accuracy. At nB > 2n0, however, there arise a number of
conceptual questions such as the convergence of many-body forces, hyperon
softening problem, and the possibility of the structural changes in hadrons.
The validity of hadronic calculations should be understood from microscopic
treatments of QCD dynamics.

At high density, perturbative QCD (pQCD) calculations have been car-
ried out to 3-loop order [8]. They suggest that the expansion works at quark
chemical potential µq larger than ∼ 1 GeV or at baryon density nB ∼ 100n0,
while at lower density, the results show the large renormalization scale depen-
dence, indicating that soft gluons are important and the matter is strongly
correlated.

The domain 2n0 . nB . 100n0 is hard to explore directly from QCD
calculations, but neutron star observations provide us with considerable in-
formation. In principle, if the M–R relation for neutron stars is established,
one can use it to directly reconstruct equations of state [9]. Such direct con-
version is not possible at present, but the current data can already impose
significant constraints on possible equations of state.

Practically, it is very useful to note that the shapes of mass–radius
(M–R) curves are roughly determined by the pressure at several fiducial
densities [10] (Fig. 1 (left)). The overall radii of typical neutron stars are
determined by the pressure at nB ∼ 2n0, and softer (stiffer) equations of
state give smaller (larger) radii. The recent trend obtained from the (sug-
gestive) estimates of neutron star radii with R = 10–13 km for M ∼ 1.4M�
(M�: solar mass) [3, 4] indicates soft equations of state at nB ∼ 2n0, and

Fig. 1. (Color online) (left) The correlation between the shape of the M–R curve
and pressures at several fiducial densities. (right) P (µq) curves. The 3-window
modeling assumes that only the bold lines is trustable (the dotted lines are their
extrapolations). The dash-dotted/green curve is the interpolated pressure.
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this is consistent with heavy-ion data [5], nuclear symmetry energy [6], and
recent advance quantum Monte-Carlo calculations [7]. Further constraints
will be obtained if the gravitational waves from neutron star mergers are
discovered [12]. With equations of state at nB > 2n0, the M–R curves
start to rise almost vertically and the slopes are determined by pressure for
2n0 . nB . 5n0. Then the curves reach their maximal masses whose values
strongly correlate with equations of state at nB & 5n0. The existence of
2M� stars plays a significant role here: it requires that equations of state
at nB & 5n0 must be very stiff, and many model equations of state were
already rejected by this condition [1].

The softness at low density and stiffness at high density together give
significant constraints on possible equations of state for 2n0 . nB . 5n0. In
general, such soft-to-stiff behaviors require the increase of pressure for finite
energy interval, but such an increase must be sufficiently slow in order to
keep the causality constraint, c2s = ∂P/∂ε ≤ c2, where cs is the (adiabatic)
speed of sound and c is the light velocity. The restriction becomes even more
severe if we have the strong first order phase transition in the intermediate
region; because of the softening associated with first order phase transitions,
after the transitions we must introduce rapid stiffening within a small energy
density interval to get the connection with stiff high density equations of
state. For these reasons, we are inclined to think that the intermediate
region does not have strong first phase transitions, and low- and high-density
matter are connected by smooth crossover or weak first order transitions1.

These theoretical and observational constraints bring us to the 3-window
description of dense matter [13, 14]: (i) At nB . 2n0, the matter is dilute
and nucleons exchange only few mesons so that baryons and mesons are
well-defined objects. (ii) At nB & 2n0, baryons start to exchange many
mesons (or quarks) and many-body forces become increasingly important.
With many quark exchanges, the identity of a hadron becomes ambiguous.
(iii) At nB & 5n0, baryons overlap and quarks begin to develop the quark
Fermi sea, forming a quark matter. Nevertheless, the matter is supposed to
be strongly coupled according to the pQCD calculations.

We construct equations of state based on this picture (Fig. 1 (right)).
At nB < 2n0, we use the Akmal–Pandharipande–Ravenhall (APR) equa-
tion of state2 as a representative of nuclear equations of state [16]. For
nB > 5n0, we use a schematic quark model for nB > 5n0 leaving the in-
medium coupling constants as free parameters. The 2M� constraint limits
the range of the effective couplings from which we delineate the proper-
ties of dense matter [14]. The most difficult is the modeling of matter at

1 If the equations of state at nB ∼ 2n0 turns out to be very stiff, then we can still allow
strong first order phase transitions [11].

2 For the crust part, we use the SLy equations of state [15] up to nB = 0.5n0.
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2n0 < nB < 5n0, where neither purely hadronic nor quark matter descrip-
tions are reliable. Thus, we construct the equations of state by interpolat-
ing the APR and quark model pressure, and applying thermodynamic and
causality constraints. This patchwork study has apparently a lot of freedom,
but actually the recent constraints are so tight that one can derive useful
insights into the QCD phase diagram.

3. Delineating the properties of matter at high density

Based on the crossover picture, we assume the adiabatic continuity in
which the structure of effective interactions is smoothly connected from low-
to-high density. We use the Nambu–Jona-Lasinio (NJL) model [17] with
effective interactions inspired from hadron and nuclear physics

H = HNJL +H3q→B
conf

− H

2

∑
A,A′=2,5,7

(
q̄ iγ5τAλA′Cq̄

T
) (
qTC iγ5τAλA′q

)
+
GV

2
(qγµq)2 ,

where τA and λA are Gell-Mann matrices for flavors and colors respectively.
The Hamiltonian HNJL is the standard NJL model which is responsible for
the descriptions of chiral symmetry breaking/restoration and the changes in
quark bases. The Hamiltonian H3q→B

conf is responsible for the confining forces
that trap three quarks into a baryon. This term should be crucial at low
density but we will drop it off by restricting the use of our model to the quark
matter domain. The third term expresses the color magnetic interaction
which is responsible for the N–∆ splitting and the color super conductivity
at high density. The last term is the repulsive density interaction which is
inspired from the repulsive ω-meson exchange in nuclear physics.

The in-medium coupling constants, H and GV, at nB > 5n0 are treated
as free parameters, while we fix the scalar coupling constant GS in HNJL

to the vacuum value3, GS = Gvac
S . We note that the effective interactions

summarize the microscopic processes of quarks and gluons in a concise way,
and their importance is reflected in the values of (GS, GV, H). If the matter
is weakly coupled and gluons become perturbative, the equations of state
should be like an ideal gas so that (GS, GV, H) should be much smaller than
the vacuum values. Instead, our model analyses suggest that the effective
couplings at nB & 5n0 should be comparable to the vacuum value to pass the
2M� constraint. In short, we use GV ∼ Gvac

S to stiffen equations of state,
which in turn requires H ∼ Gvac

S for the smooth connection to the APR
equation of state at nB = 2n0. In Ref. [18], more elaborated treatments of
the running GV were performed.

3 In principle, we should also vary GS but we found that GS at nB > 5n0 should be as
large as its vacuum value to avoid strong first order phase transitions.
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This picture is actually consistent with our implicit assumption on the
QCD vacuum energy. For instance, suppose that the matter at nB ∼ 5n0
becomes weakly coupled and perturbative. Then the resulting pressure must
consist of perturbative contributions plus a constant term, B (bag constant),
that reflects the difference between the perturbative and non-perturbative
vacua. The size of such a bag constant is naively given by the QCD scale
∼ (200 MeV)4, comparable to the energy density at the core of neutron stars.
If such a large bag constant appeared, it would reduce the pressure by B,
while increase the energy density by B causing the significant softening in the
equations of state. Thus, this is consistent with the picture that the gluons
remain non-perturbative and do not produce a significant bag constant at
nB ∼ 5n0.

In summary, we delineate properties of QCD matter by studying the
equations of state supposed from theoretical and empirical constraints. It
seems to us that the crossover phase transition together with adiabatic con-
tinuity from hadronic to quark sectors offer a consistent description of QCD
matter. Gluons seem to be non-perturbative even after the quark matter
formation. Such a regime has been studied in the context of quarkyonic
matter in which one takes the large Nc limit to keep gluons in medium as
non-perturbative as in the QCD vacuum [19]. At finite Nc, the descrip-
tion of gluons in neutron star densities is a highly non-linear problem; it
strongly depends on how strongly quarks near the Fermi surface fluctuate,
but the nature of such fluctuations is very sensitive to the condensed phases
in consideration [20]. The effects of the condensates appear in the excitation
modes [21] and the resulting thermal equations of state. The future detec-
tion of gravitational waves from neutron star mergers will provide us with
such information, with which we should be able to discriminate the phase
structure and test various theoretical scenarios.

I thank P. Powell, Y. Song, G. Baym, and K. Fukushima for the collab-
oration. I would like to express my gratitude to the workshop organizers for
inviting me to this enjoyable workshop.
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