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We investigate the kurtosis of the net proton number and the chiral or-
der parameter within the model of nonequilibrium chiral fluid dynamics for
a crossover scenario near the critical point. Our model describes the inter-
play between a dynamical order parameter and a quark–gluon fluid during
the expansion of the hot fireball created in a heavy-ion collision. A sub-
sequent particlization process allows us to study experimental observables
via an event-by-event analysis. We aim at understanding the interplay of
two types of fluctuations: First, fluctuations in the chiral order parameter,
and second, fluctuations in the net proton number. Our results show that
both follow the same trend in a dynamical setup of a crossover transition.
Although effects of finite size and inhomogeneity are present, the signal in
the net-proton kurtosis develops clearly.
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1. Introduction

At high temperatures or densities exists the so-called quark–gluon plasma
(QGP), characterized by the deconfinement of color charges and restoration
of chiral symmetry. The transition from hadron gas to QGP is not a phase
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transition but rather an analytic crossover at vanishing baryochemical po-
tential. For non-zero net-baryon densities, however, a critical point and
first-order phase transition are conjectured. This idea is mainly supported
by effective model studies [1] or Dyson–Schwinger equations [2]. The pos-
sibility of a critical region would necessarily mean that fluctuations of the
order parameter or the net quark number show characteristic peak struc-
tures or sign changes [3,4]. Of particular interest for experiments here is the
kurtosis, defined as the ratio c4/c2 of the respective generalized suscepti-
bilities and related to the fourth cumulant of the corresponding observable.
The STAR Collaboration at RHIC has measured the net-proton kurtosis as
proxy for the net baryons in its beam-energy scan program. Although results
showed a nonmonotonic behavior of the net-proton kurtosis as a function of
the beam energy [5], we still require a thorough understanding of the dy-
namical processes during the evolution in a heavy-ion collision, mainly by
adopting adequate dynamical models. Here, we present latest results from
the NχFD model [6–10] after implementing a Cooper–Frye particlization
procedure [11].

2. Nonequilibrium chiral fluid dynamics (NχFD)

The idea behind this model is to provide a dynamical description of a low-
energy effective QCD model, which, in our case, is given by a linear sigma
model with dilaton field with chiral order parameter σ and dilaton χ [12]

L = q (iγµ∂µ − gσ) q + 1
2 (∂µσ)

2 + 1
2 (∂µχ)

2 + LA − Uσ − Uχ . (1)

The sigma field is propagated using the following Langevin equation of mo-
tion:

∂µ∂
µσ + ησ∂tσ +

δVeff

δσ
= ξ , (2)

derived from the two-particle irreducible effective action, leading to a tempe-
rature-dependent damping coefficient η, as a result of the production of a
quark–antiquark pair out of a sigma. The quark degrees of freedom are
integrated out, constituting an ideal fluid coupled to the fields through an
energy and momentum conserving source term. We have previously used
this model to demonstrate effects of critical slowing down or formation of
inhomogeneities at a first-order phase transition [8, 9].

Drawing comparisons to experimental observables becomes possible after
implementing a Cooper–Frye freeze-out [13,14]. Hereby, we allow production
of all nonstrange particles from the UrQMD model [15,16] on energy density
hypersurfaces. Particles are produced such that the total baryon number and
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the total energy including energies of the fields σ, χ are exactly conserved
in each event

e = efluid +
1

2

(
∂σ

∂t

)2

+
1

2
(∇σ)2 + Uσ +

1

2

(
∂χ

∂t

)2

+
1

2
(∇χ)2 + Uχ . (3)

To estimate the ability of this dynamical model to reproduce the desired
critical fluctuations, we scrutinize its behavior by performing a simulation
in a box with constant temperature, neglecting energy and momentum ex-
change between fields and fluid. We extract the variance of the sigma field
on an event-by-event basis and find that it follows the curve of the sigma
susceptibility, obtained as the second derivative of the thermodynamic po-
tential, cf. Fig. 1. Results are obtained for a constant µq = 100 MeV in the
crossover regime left of the critical point of the model. Each point in this
plot corresponds to one set of 107 simulations performed at the respective
temperature.
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Fig. 1. Comparison of the sigma field variance from box simulations of the NχFD
model to the susceptibility obtained from the thermodynamic potential.

2.1. Kurtosis of the net proton number in an expanding medium

We study a crossover evolution near the critical region of the model.
An initial condition obtained from the UrQMD model is allowed to evolve
according to the coupled dynamics of Langevin evolution and ideal fluid
dynamics. We obtain subsequent particlizations along hypersurfaces of con-
stant energy density to calculate the net proton number and the volume-
averaged values of the sigma field.

In Fig. 2, we compare the kurtosis of the net proton number to the kur-
tosis of the sigma field. Here, we see a similar trend in the two curves as
a function of energy density. The minima occur at nearly the same energy
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density of about 2.5e0. For the sigma field, we furthermore observe a max-
imum of the kurtosis at lower energy densities, well below the point where
it is expected in an equilibrium phase transition. This behavior may be
attributed to memory effects in this nonequilibrium evolution.

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4

σ field
net−protons
0.4<pT<0.8GeV/c

σ field
net−protons
0.4<pT<0.8GeV/c

σ field
net−protons
0.4<pT<0.8GeV/c

σ field
net−protons
0.4<pT<0.8GeV/c

κ
σ

2

e/e0

Fig. 2. Net-proton kurtosis as a function of freeze-out energy for a nonequilibrium
evolution compared with the kurtosis of the sigma field. Figure from [11].
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