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The role of phase-space occupation effects for the formation of two- and
three-particle bound states in a dense medium is investigated for systems
with short-range interactions. While for two-fermion bound states due to
the Pauli blocking in a dense medium the binding energy is reduced and
vanishes at a critical density (Mott effect), for three-fermion bound states,
it is shown to be nonzero and positive. Therefore, beyond the Mott density
of the two-fermion bound state, three-fermion bound states can exist in a
medium and, therefore, be denoted as the in-medium Borromean states.
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In strongly coupled systems where the interaction saturates at short
distances, the effects of phase-space occupation (Pauli blocking and Bose
enhancement) are dominating medium effects. They can be nicely discussed
in the algebraic Lipkin model [1] by generalising it for fermion–boson pairs
(composite fermions) as compared to boson–boson pairs [2]. The problem
of stability of three-particle bound states in dense matter is interesting for
applications like the dissociation of baryons in dense quark/nuclear matter
[3–6] and to fermionic atoms in traps [7].
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In the present note, we discuss the case of composite fermions in medium
by considering the phase-space occupation factor that results from the Mat-
subara summation in the intermediate propagation in the N -particle
T-matrix approach. The N -particle T-matrix in ladder approximation fulfils
the Bethe–Goldstone equation

TN = VN + VNG
0
NTN = VN

(
1− VNG0

N

)−1
, (1)

were VN is the interaction potential and G0
N is the free N -particle Greens

function in which the phase-space occupation effects become apparent. Let
us examine the case of 2-particle and 3-particle states. The free two-fermion
propagator in medium depends on the bosonic Matsubara frequency Ω12 =
ω1 + ω2 and is obtained by performing the Matsubara summation over ω1

G0
2(Ω, e1, e2) =

∑
ω1

1

ω1 − e1
1

Ω12 − ω1 − e2
=

Q12

Ω12 − e12
. (2)

The energy denominator has a pole at Ω12 = e12 = e1 + e2 and in the
numerator occurs the phase-space occupation (Pauli blocking) factor Q12 =
1 − f1 − f2 with the Fermi functions fi = [exp(ei/T ) + 1]−1. The free
three-particle propagator is obtained by considering a pair of fermion and
(composite) boson with the fermionic Matsubara frequency Ω123 = Ω12+ω3

G0
3(Ω, e1, e2, e3) =

∑
ω3

1

ω3 − e3
Q12

Ω123 − ω3 − e12
=

(1− f3 + g12)Q12

Ω − e12 − e3

=
Q123

Ω123 − e1 − e2 − e3
, (3)

where Q123 = 1−f1−f2−f3+f1f2+f1f3+f2f3 is the three-particle phase-
space occupation factor and we have used the identity g12(1−f1−f2) = f1f2.

The in-medium Borromean property of three-fermion states can be seen
in the simple example when f1 = f2 = 0.5, leading to a blocking of the
two-particle state, Q12 = 0 (Mott effect). The three-particle state, however,
has for the same case only a reduction of the effective coupling since Q123 =
0.25 6= 0 [6], but can still be bound. In a next step, for a liquid of composite
fermions such as nucleons, one obtains a weakly attractive boson exchange
interaction that leads to fermonic superfluidity, as in nuclear matter [7].
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