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We investigate the phase structures of theories which differ from QCD
only in the gauge group and can be simulated on the lattice at non-vanishing
chemical potential µ. These theories can thus serve as a testing ground for
functional methods at non-vanishing density. We determine the chiral and
confinement/deconfinement transitions at µ = 0 for the three gauge groups
SU(3), SU(2) and G2 for two-quark flavors and extend the study of the
chiral transition to non-zero µ. We locate the critical point where the chiral
crossover becomes a real phase transition. Within the employed truncation,
we find that all three theories behave qualitatively very similarly.
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1. Introduction

A worldwide effort is devoted to the study of the phase diagram of QCD
both theoretically and experimentally. However, due to the complex action
problem, Monte Carlo simulations are currently not possible at large chemi-
cal potential µ [1]. Functional methods such as Dyson–Schwinger Equations
(DSEs) [2,3] or functional renormalization group equations [4,5] provide an
alternative framework to explore the non-perturbative regime of quantum
field theories. DSEs are the equations of motions of the correlation func-
tions of a quantum field theory. These non-perturbative equations consist of
an infinite system of coupled (non-)linear equations. Thus, truncations are
mandatory to solve them numerically. The pressing question is, of course,
how well a truncation describes the underlying physics. The most advanced
truncations are actually able to describe the correlations functions of QCD
and Yang–Mills theory quite well [6,7]. In this work, we will study the effect
of the medium on the matter sector of QCD and QCD-like theories within
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the DSE framework. For this purpose, we will extract the chiral and (at van-
ishing chemical potential) the confinement/deconfinement transitions from
the corresponding quark propagators. The different studied gauge groups
are SU(3) and SU(2) and the exceptional group G2. The last two do not
suffer from the sign problem [8, 9] and can be simulated at finite µ on the
lattice, e.g., [10–13]. They are in many respects similar to QCD, e.g., for
the quenched theories, the chiral and deconfinement transitions occur at the
same critical temperatures. Moreover, the correlation functions as obtained
with lattice methods are qualitatively very similar [14–18]. Thus, by under-
standing the effects of truncations of functional equations in these QCD-like
theories, we hope to learn also something about the equations in QCD.

2. Setup

At finite temperature and density, one can write the quark propagator
S(~p, ωn) with the following four dressing functions:

S−1(~p, ωn) = i~p~γA(~p, ωn) + iωnγ4C(~p, ωn) +B(~p, ωn) + iωnγ4~p~γD(~p, ωn) ,
(1)

where ωn = 2πT (n+ 1). D(~p, ωn) vanishes in certain asymptotic cases and
in Ref. [19], we showed explicitly that the contribution of D(~p, ωn) stays
small for µ = 0 and T 6= 0. Hence, it will be neglected in this work. The
dressing functions are calculated from the gap equation depicted in Fig. 1.
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Fig. 1. The system of solved DSEs. Quantities with a black blob are fully dressed,
as they are internal propagators. Continuous/wiggly lines denote quarks/gluons.
The gray blob denotes the approximated quenched part of the gluon propagator.

The chiral and confinement/deconfinement transitions are extracted from
the chiral condensate

〈
ψ̄ψ
〉
ϕ
evaluated with an U(1)-valued boundary condi-

tion ωn(ϕ) = 2πT (n+ ϕ
2π ), ϕ ∈ [0, 2π]. At ϕ = π, the usual chiral condensate〈

ψ̄ψ
〉
is recovered which can be used to identify the chiral transition. The

Fourier transform of the ϕ-dependent chiral condensate w.r.t. ϕ is called
the dual chiral condensate Σ. It transforms under center transformations
in the same way as the Polyakov loop and can thus be used as an order
parameter for the quark confinement/deconfinement transition [20–22]. The
condensates are calculated as
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where the quadratically divergent chiral condensate is regularized by sub-
tracting the condensate with a heavier bare mass mh from the condensate
of the light bare mass ml. The crossover temperatures are determined via
the extrema of the derivatives of the condensates

χch =
∂∆l,h

∂T
, χdec =

∂Σ

∂T
. (3)

As an input for the quark propagator DSE, we need the gluon propaga-
tor dressing functions and the quark–gluon vertex. For the transverse and
longitudinal gluon dressing functions, we use [17]

ZT/L

(
p2
)

=
x

(x+ 1)2

((
c/Λ2

x+ aT/L

)bT/L

+ x

(
α(µ)β0

4π
ln(x+ 1)

)γ)
, (4)

where x = p2/Λ2, γ is the anomalous dimension of the gluon, β0 is the
lowest coefficient of the β function, α(µ) is the coupling and the parameters
c = 11.5 GeV2 and Λ = 1.4 GeV are fixed. The temperature dependence
enters via aT/L and bT/L, which is determined by fits to quenched lattice
data [17, 18]. The effects of the quarks in the gluon dressing will be added
through the explicit calculation of the quark loop as introduced in [23].
Figure 1 shows the complete system of DSEs we solve using the framework
of CrasyDSE [24].

For the quark–gluon vertex, we will use a model that effectively captures
the infrared contribution in a dressing of the tree-level tensor γµ [25]

Γν(q; p, l) = γµΓmod(x)

(
A
(
p2
)

+A
(
l2
)

2
δµ,i +

C
(
p2
)

+ C
(
l2
)

2
δµ,4

)
, (5)

Γmod(x) =
d1

(x+ d2)
+

x

Λ2 + x

(
α(µ)β0

4π
ln
( x
Λ2

+ 1
))2δ

, (6)

where δ is the anomalous dimension of the ghost and the other parameters
are the same as for the gluon dressing functions. All parameters of the
models depending on the gauge group are listed in Ref. [19]. The gauge-
group-dependent values of d1 were fixed in [19,26] and are given in Table I.

3. Results

We first recapitulate the results at µ = 0 from [19]. In Table I, the
transition temperatures are listed and the condensates are shown in Fig. 2.
The chiral and confinement/deconfinement transitions are very close to each
other in all three cases. In general, we find a universal qualitative behavior
of this truncation [19].
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TABLE I

The crossover temperatures for Nf = 2 at µ = 0 and the locations of the critical
endpoints.

SU(3) SU(2) G2

d1 7.6 GeV2 15 GeV2 6.83 GeV2

Tc(µ = 0) (chiral) 194 MeV 218 MeV 153 MeV
Tc(µ = 0) (deconfinement) 201 MeV 222 MeV 157 MeV
µCEP (chiral) 171 MeV 200 MeV 175 MeV
TCEP (chiral) 158 MeV 160 MeV 115 MeV
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Fig. 2. Chiral (left) and dual (right) condensates normalized to the vacuum chiral
condensates for Nf = 2 with a bare quark mass of m = 1.2 MeV at the renormal-
ization point of 80 GeV.

Fig. 3. Chiral condensates of G2 (left) and SU(2) (right) for Nf = 2 normalized to
the vacuum values. The dashed lines represent the crossover and the continuous
lines the first order transition regions.
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Adding a light quark chemical potential, we calculate the chiral crossover
line until the critical endpoint beyond which it turns into a transition of the
first order, see Fig. 3. Using two different initial conditions for the iterative
solving procedure, we identify the spinodal lines of the first order regions.
This computation is done with a low resolution in µ and the accuracy of the
position of the CEP within this truncation, see Table I, will be improved in
the future.

4. Summary

We extended our analysis at µ = 0 [19, 27] of the universality of a DSE
truncation scheme originally developed for SU(3) [23] by studying the chiral
transition at µ > 0. Within the given truncation, we located the criti-
cal endpoints for the QCD-like theories with gauge groups SU(2) and G2.
All three gauge groups show qualitatively the same behavior within this
truncation. Before more detailed comparisons with lattice results are per-
formed, we plan to include also diquarks in our calculations, which condense
at µ = mπ/2 according to chiral perturbation theory [8] and lattice calcu-
lations [11]. Also the resolution in µ-direction will be improved. Further
possible improvements include explicit calculations of the Yang–Mills sector
or the quark–gluon vertex, which, however, are challenging projects on their
own.

Results have been obtained using the HPC clusters at the University
of Graz. Funding by the FWF (Austrian science fund) under contract No.
P 27380-N27 is gratefully acknowledged.
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