
Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 4

ANALYTIC APPROACH TO πK SCATTERING
AND STRANGE RESONANCES∗

A. Rodas

Departamento de Física Teórica II and UPARCOS
Universidad Complutense de Madrid, Madrid, Spain

(Received September 13, 2017)

We review our analysis of πK scattering using forward dispersion rela-
tions. The method yields a set of simple parameterizations that are com-
patible with forward dispersion relations up to 1.6 GeV while still describing
the data. Once the partial waves are obtained, we calculate the poles in
the complex plane by means of the Padé approximants, thus avoiding a
particular model for the pole parameterization. The resonances calculated
below 1.8 GeV are the much debated scalar κ-meson, nowadays known
as K∗

0 (800), the K∗
0 (1430) scalar, the K∗(892) and K∗

1 (1410) vectors, the
spin-two K∗

2 (1430) as well as the spin-three K∗
3 (1780).
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1. Introduction

A reliable determination of strange resonances is by itself relevant for
hadron spectroscopy and their own classification in multiplets, as well as for
our understanding of intermediate energy QCD and the low-energy regime
through the Chiral Perturbation Theory. In addition, πK scattering and the
resonances that appear in it are also of interest because most hadronic pro-
cesses with the net strangeness end up with at least a πK pair that decisively
contributes to shape the whole amplitude through final-state interactions.

Very often the analyses of these resonances have been made in terms of
crude models which make use of specific parameterizations such as isobars,
the Breit–Wigner forms or modifications, which assume the existence of some
simple background. As a result, resonance parameters suffer a large model
dependence or may even be process-dependent. Thus, the statistical uncer-
tainties in the resonance parameters should be accompanied by systematic
errors that are usually ignored.
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For the above reasons, there is a growing interest in methods based on an-
alyticity properties to extract resonance pole parameters from data in a given
energy domain. They are based on several approaches: conformal expansions
to exploit the maximum analyticity domain of the amplitude [1], the Lau-
rent [2], Laurent–Pietarinen [3] expansions, Padé approximants [4, 5], or the
rigorous dispersive approach [6]. They all determine the pole position with-
out assuming a particular model for the relation between the mass, width
and residue. In this sense, they are model-independent analytic continua-
tions to the complex plane.

These analytic methods require as an input some data description. It
has been recently shown [7] that in the case of πK scattering data [8], which
are the source for several determinations of strange resonances, they do not
satisfy forward dispersion relations up to 1.8 GeV. This means that in the
process of extracting data by using models, they have become in conflict with
causality. Nevertheless, in [7], the data were refitted to satisfy those forward
dispersion relations, and a careful systematic and statistical error analysis
was provided. In [5], we made use of the Padé approximants method in
order to extract the parameters of all resonances appearing in those waves.

In [7], we used a set of fixed-t dispersion relations with t = 0 so that
we could implement this set of equations up to arbitrary energies in the
real axis, providing a set of simple but powerful constraints for the fits.
We considered two independent amplitudes, one symmetric and one anti-
symmetric, under the s↔ u exchange that cover the isospin basis T+(s) =
(T 1/2(s)+2T 3/2(s))/3 = T It=0(s)/

√
6 and T−(s) = (T 1/2(s)−T 3/2(s))/3 =

T It=1(s)/2. The symmetric has one subtraction and can be written as

ReT+(s) = T+(sth) +
(s− sth)

π

×P
∞∫

sth

ds′
[

ImT+(s′)

(s′−s)(s′−sth)
− ImT+(s′)

(s′+s−2ΣπK)(s′+sth−2ΣπK)

]
,

(1)

where sth = (mπ + mK)2 and ΣπK = m2
π + m2

K . In contrast, the anti-
symmetric one does not require subtractions,

ReT−(s) =
(2s− 2ΣπK)

π
P

∞∫
sth

ds′
ImT−(s′)

(s′ − s)(s′ + s− 2ΣπK)
. (2)

We also included in our analysis 3 sum rules for threshold parameters
(scattering lengths and slopes) in order to obtain the best possible result in
this region, where there are no data.
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2. Method and results

The first part of the calculation is to obtain a set of partial waves com-
patible with Eqs. (1) and (2), however, the final result must also describe
the data, at least qualitatively.

In order to impose the FDRs, we define a function di as the difference
between the input and the output of each dispersion relation at the energy
point si, whose uncertainties are ∆di. We thus define the average discrep-
ancies

d2T± =
1

N

N∑
i=1

(
di

∆di

)2

T±
. (3)

We also include a penalty function to ensure that the new solution still
describes the data and then minimize the total function.

Figure 1 shows the total amplitudes and the huge improvement between
the UFD and the CFD parameterizations, in Fig. 2 we show the difference
between the fits to the data and the final results for the scalar partial waves
(region where the κ exists). The scattering lengths obtained are compatible
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Fig. 1. Comparison between the input (fits) and the output of the forward disper-
sion relations (FDRs) for the total amplitudes T+ (top) and T− (bottom). The
gray bands describe the uncertainty of the difference between the input and the
output. The starting set fitted directly to the data is called UFD, while the final
result obtained using FDRs as constraints is called CFD.



1040 A. Rodas

0,8 1 1,2 1,4 1,6
s

1/2
(MeV)

-30

-25

-20

-15

-10

-5

0

δ
0

3/2
(s)

Jongejans et al.
Cho et al.
Bakker et al.
Estabrooks et al.
Linglin et al.
UFD
CFD

0,8 1 1,2 1,4 1,6

s
1/2

(GeV)

0

50

100

150

φ
S

0

0,2

0,4

0,6

0,8

1

|t
S
|

Estabrooks et al.
Aston et al.
UFD
CFD

^

Fig. 2. Comparison between UFD and CFD fits for the scalar partial waves, where
|t̂| stands for the modulus, δ for the phase shift and φ for the total phase of each
partial wave. The gray bands cover the errors of the parameters for each fit.

with some rigorous predictions and experimental determinations, reading
mπa

1/2
0 = 0.22 ± 0.01 and mπa

3/2
0 = −0.054+0.010

−0.014. Once we have obtained
a set of equations that are compatible with the analytical requirements,
we can use the Padé approximants to continue it to the complex plane.
The PNM (s, s0) = QN (s, s0)/RM (s, s0) Padé approximant of a function F (s)
around the point s0 is a rational function that satisfies PNM (s, s0) = F (s) +
O((s − s0)M+N+1), with QN (s, s0) and RM (s, s0) polynomials in s of the
order of N and M , respectively. In the case of one pole in the complex
plane, the formula reads

PN1 (s, s0) =
N−1∑
k=0

ak(s− s0)k +
aN (s− s0)N

1− aN+1

aN
(s− s0)

, (4)

where the position and residue of the pole are

sNp = s0 +
aN
aN+1

, ZN = − (aN )N+2

(aN+1)N+1
. (5)

With this simple analytical continuation, we can go to the next continuous
Riemann sheet and find not only the elastic but also inelastic heavy res-
onances. We define the position of the pole as √sp = M − iΓ/2, where
the systematical errors of each pole are calculated using different parame-
terizations fulfilling FDRs and the statistical errors are estimated running a
simple Monte Carlo for the parameters of each fit.
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In the case of the κ resonance, shown in Fig. 3, which is the lightest
strange resonance (not confirmed according to the PDG), the calculation
is compatible with the most rigorous dispersive result, showing the good
agreement between both analytical methods. The result is √sp = (670 ±
18) − i(295 ± 28) MeV, while the result estimated by the PDG is √sp =
(682±29)− i(274±12) MeV. The values obtained for the rest of the strange
resonances appearing below 1.8 GeV are listed in Table I.
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Fig. 3. Final result for the κ pole. Other references are taken from the RPP
compilation [9].

TABLE I

Resonance parameters.

Resonance Mass [MeV] Half width [MeV]

K∗
0 (1430) 1431± 6 110± 19

K∗
1 (892) 892± 1 29± 1

K∗
1 (1410) 1368± 38 106+48

−59
K∗

2 (1430) 1424± 4 66± 2
K∗

3 (1780) 1754± 13 119± 14

3. Summary

Figure 1 shows that the CFD set really well satisfies the dispersion rela-
tions up to 1.6 GeV. Above that energy, the differences between the input
and the output require larger deviations from data as it is shown in Fig. 2.

Using the parameterizations obtained in [7], we have calculated in [5] the
parameters of the strange resonances appearing up to 1.8 GeV thanks to the
method of the Padé approximants. The values obtained for the parameters
of the resonances are in agreement with other works in the PDG, although
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our approach is based on data analysis consistent with analyticity and makes
use of a model-independent method to extract the parameters, providing a
realistic estimate of systematic uncertainties.
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